AD-A136 256 YLSI (YERY LARGE SCALE INTEGRATED) DESIGN OF A 16 BIT
VYERY FAST PIPELINED CARRY LOOK AHEAD ADDER(U> NAYAL
POSTGRADUATE SCHOOL MONTEREY CA J R CONRADI ET AL.

UNCLRSSIFIED SEP 83 F/G 9/5

N g b R e o A M S g e A AT A Ry Uy Yl Ay T ity AR JiarivAy Saietay DA SR puedDACIRG AT DA SN BATin S ou N —L'!’

FFEEEE

= lls
e FEE
EEEE
EEF

e

==

Iz
O

=
>

; MICROCOPY RESOLUTION TEST CHART
‘ NATIONAL BUREAU OF STANDARDS-1963-A

-

A

|
¥

]

.

-

4.5 .ﬁ&a >

i

RS

1

N T e e N T T S A T P P £

S

AR AR RN W W) LA TNELENEY Bt e g Sl .,
. 3 ¥ - S 4.8 L ataT AU T LV RKTAYEY KR A bd st Wl . < R .
K. o . et e Ta - T T LTe (N) ' mras]

N >
NAVAL POSTGRADUATE SCHOOL

Monterey, California

i,.

- . .ﬁ"‘..

XA

,,
20 ’
Frofiuiial 03

_
THESIS
k4 S
rh
VLSI DESIGN OF ApVERY FAST PIPELINED
R : . CARRY LOOK AHEAD ADDER
"’ ' ‘ by ,
-~ Q% Joseph R. Conradi

2 S r
S and

Bruce R, Hauenstein

September 1383

D. £. Kirk

Thesis Advisor:

'4'7
! Approved for public release, distribution unlimited

83 12 29 034

Ry oA (R AT
L SN0 W, WA PP VY ki ad

SECUMTY CLASHTICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
hm 2. GOVY ACCESS an_'r"s CATALOG NUMBER

AD ANl ob 5

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ;
VLSI Design of a Very Fast Pipelined Master's Thesis;)
\ Carry Look Ahead Adder September 1983 K
» [6. PERFORMING ORG. REPORT NUMBER .
: 0 S CONTRACT GR GRANT NUNBERS) 3
. Joseph R. Conradi and .
| Bruce R. Hauenstein)
; 3
i 5. PERPORMING ORGANITATION NAME AND ADDRESS TS AOCRAM ELEMENT BROJECT TAWK |
3 Naval Postgraduate School AREA & WORK UMIT Num ‘
; Monterey, California 93943 b,
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
1 Naval Postgraduate School September 1983
X Monterey, California 93943 5. NUMBER OF PAGES
1 212 .
? YL RORITONING ASENSY NAME © AODRESK(I different from Coniwelling Office) | 18. SECURITY CLASS. (of thie report) I
UNCLASSIFIED ;

e. O ASSIFICATION/ DOWNGRADING
SCHNEODULE

(T8, OISTMBUTION SYATEMENT (ol Wis Report)
Approved for public release, distribution unlimited

kol 2 7]
g]

%} .
: :
f: 17. OISTRIBUTION STATEMENT (of ihe oboivast antored in Blosk 29, if different frem Repert) | Agccession For N
S NTIS GRAMI ﬁ
DTIC TAB O
Y Unannounced 0O
b L
N 8 EMENTARY NOTES e .
i By 2
» | Distribution/ ;
Avallability Codes
e mhnum da.nnmu-r -il_anmr by Noa.m-bu) M‘v‘:-xll and/or 0
] CAD Tools, VLSI Design, 16-Bit Pipelined Adderip;g¢ | Special
M i -
. ! ﬁ/ .
" RACT (& reverse oids i nessccary and idontily by beek mumber) :
; This thesis is an introduction to the use of computer-aided -
Ly design (CAD) tools for the design of very large scale -
N integrated circuits (VLSI). The techniques are described e 2
. and a tutorial is given which illustrates their use in the —>» &Y g
[.
q .
Al -
b9
DD 55" W73 coimow or 1 wov esis ossoLETE] N
i . $/N 0102- LF-014- 4401 SECURITY CLASBIFICATION OF THIS PAGE (When Dore Enterec '

T et T T et ettt et e T . L S R e S S G IR SR AR TP,
S S A e s TR Sy

% o8 SRR Lo

k- e 4 i e A 2yl 0 i S AN G | N i Bl R S Ao 8 AL AL AR RS

computing environment at the Naval Postgraduate
School. The CAD tools were applied to design a
16-bit fast pipelined adder.

B ST upp Y ¢

$.N 0102- LK 014- 6601 2

SECURITY CLASSIFICATION OF THIS PACE(When Date Bntored)

R I AN S I R TN A L N RrL P S AT TR
~ D SRR L G N R TR

Approved for public release, distribution unlimited.

VLSI Design of A
16 Bit Very Fast Pipelined Carry Look Ahead Adder

by

Joseph Robert Conradi
Lieutenant, United States Navy
B.S., University of Louisville, 1977
and
Bruce Robert Hauenstein

Lisutenant, United States Navy
B.S., University of Louisville, 1976

Submitted in partial fulfiliment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1983

Authors: M £ Gmacts
e @ Mg S
Approved by: _M

Thesis Advisor

Rehad-1D Sha

Second Reader T
="

Chairman, Department of Electrical Engineering

4’& a., Joy/
Dean of Sciencé¢ and Engineering

L4 ."\'

Yk I

N
ok
2
2
i
B

&3

e

F=TW
A

s -

PR W Ce e AL B R SV a tm P 20 WAL BN _f i fra e ou b A b e B B i e et 3 -

ABSTRACT

This thesis is an introduction to the use of computer-aided design (CAD)
tools for the design of very large scale integrated circuits (VLSI). The techniques
are described and a tutorial is given which illustrates their use in the computing
environment at the Naval Postgraduate School. The CAD tools were applied to
design a 18-bit fast pipelined adder.

) -v.‘.-q.;\-q\,\- > 1*“_.-*.;’-(-}.":-. N
v [" - » "

e e e

..........

TABLE OF CONTENTS

_ L INTRODUCTION .cooevocverrnsssvsesssssosssesesssssssssessessssssesnsssos e 1
II. OVERVIEW OF VLSIDESIGNccccoonmmmmnrininiiiicsincesiimessnssnsessnssnsosns 13
A. INTRODUCTIONcccconremreeneinrrcrnennarssesssessonssenesssmssnessssseassaesansassans 13
B. VLSICIRCUITRYcccoeouemmireinrinimnianaeeiisiiessneenessissessesssessssesnsssssons 15
1. Basic Transistorscccccermririreiriniinicee e 15
2 Basic Gatesccccooviiiiiiiiiinn e 17
3. Basic CIPCUILIYcccoveeiriiiiiiinerricee e svvisn st e s s e 17
C. METHODOLOGYccooceiermmeniniiernnrreennecsenssstemnessnesssessssessanssssssesnaosses 22
- 1. LAYOUL ... ticirer e creearee s e e e rnaseas e s saesssasessassisernanasannn 23
R JLOGS ...ttt st snr et seeesae e ssaen e a e s sr e 24
Bl 3. DOSGRRULES ..o 24
4. Building Block Approach To VLSI Designccocvveiiennnririnnnnes 25
8. CADTOOIScoooooiimiiiiiiiiiiiiinicticccc et e e e e e a e 25
,»i & PLAGENEIAROLooovernrrieneisieseseres oo esessersasesss s enssie 26
:*2 b. CLL-Chip Layout LAnguageccccocoeererreenrerennnininnnnniinenene 28
o ¢. DRC Design Rule Checkercccccvvviniiiniviineiiineniinniniiienneen : 28
d. Circlit BXtractorccooocuvimieiiniiinnncne e e 28
€ SIMUALOrccovviiiiiiiiiii e 28
- - D. FABRICATIONcooovriiiiiiiiiiieniere s scitsennesressaienes e csnssnnssnnes s snnes v
i: 1. Plle GeNnerationc.ccoviiriccunenniiniicniinne e sneesene 27
. 2. MOSIS w.oooooeevve oo oo ceenessese e 27
ot 3. Pattern Generator and Maskmakingccccooveieneccieniiinens 27

: 5

AU AN N ANV RS SO

L AL

RS AL R Aty

1. Chip Layout Language (CLL)ccc.coervvemimmresrinniesinnnnnresnieennns

t m R Al e Ly L e T PRI AP

b. Cifloadccocevemvnvennnn eeveesensensiresersansnerans ererresenirerentrrenrnasan

€ UNCORVELLocoovvvnnnerriiriirenieieseeereenereneesssisnes cevrrrereeernnerrrrennens
3. Design Rule Checker (DRC)ooveerverierieraririeennirenseeneensnnan.
4. Circuit Extractor ..

B EXEPACY .ottt e

..

8 &8 8 ¥ ¥ R ¥ 8 B 8 8 8 8 B 8

9 8 8 8 8 8 &8 8

g8 8

_ LT 1 . RO U OO 38

g) ' 5. SUALIC CROCKEE covvveeeerrseesesseesessesessasssessessessasessessssssesssesessreessesses 38

; 6. Evont Level SIMUIALOPcccoorrrsvmmmmrssrssssnnsisissisrasennsessres e 39

) IV. GENERATING CIF USING CLLoveeesesssscmsmssssesssssssssessrssnsssssssnssssssssens 40

§ A TUTORIAL w.ooeeoo.oeeeeveerese oo sessssesissssssesssssecessssssssssssssneesssssessssnns 40

1, HOAAEE ...coooooveecenieerreraemnsssrssessssaensresessosanuntnnnetiesesianessssesssassns 41

8. COMMENEScovvvenrreeeienerrnrerreeetstninie sttt e e e aens 41

D. EXEOTRAL SYIIDOLSces.rrerscssssmsessessssesesssssssssssssnsesssssesesos 41

€. DOMANEScceeeeieeeeeiecesesrensrranaerersee s et e e eraeteeaaeeee s nennns 42

d. Includesce.ecoene veeessesresietnere st e e e s st e s e et re e st aarrbressanen 42

. €. COnItIONALSceovvereeiersismvrrnrnnnenieeiermiirer et ee e eenes 42

2. Symbol Definitionccccoemrerrmmiiiminiiiiiniieieen e 43

N 8. BOY ... vvvvvvenovosseeessseseseassssessessasssse st sssns s st e 43

E 8. COMMENLSovvvvnerreiiireransnreesesnmianniene et eaebre e ean e es 44

d D. ReCLANGIEScoconvieiciiiereesnic st 44

& €. LAYOTS ...oooeiieeeesvssesaesesss s er s s an e 44

i*:f G WIPESo.covveevvesssssssss s sssssssbssssmssss s e 45

‘: 8. VHBB .ooovioniiiiiiereeneeessenernessasarnessssbosasntssesssetsnonnarssrnnsnnensssenstssnnernres 48

5 O o7 | T O U TSR 48

3 @ IOrationc.ccecvviivenreerermesinnmie e 47

- B EXPIESSIONSoooenvesevessesssssenismsasessssesseesssessnssnsssasssasssnsssnns 47

U = 1.\ U P U UP 48

- B. CELLLIBRARYooovviiiiiiirririnirieersesieseretiniesttentetinsstenensnenieeesssaenssnes 48

C. USING CLL ...ooovovvveveeeseveae s ssseessesssmsssssssesssssssssesss s sssssssn 48

2,} 1. Making FAl@soc.ocoovvveermesmsrencnminnns st 49
» 7

P

o T o (SO SR A 4 ST

21 NNy

n e S
[

"
g
~
B PIORHINGvovcovervvvsreensessssnnnnsssssnenesssssssssesssesessssssessesessesoesssssee o 49 N
8. CP@AUNECIFccvevvnamrrarrmssmsniessssse st s st ee e es e 50 .\
D. BXAMPLEoccooroooecerrreeenesssess e seeesssseeesessnesssesecseere e 51 ‘
V. DESIGN VALIDATIONcccoooniniiiiiinecnnnnenninsesireseannsnsaesss s sesne s sorenene 58 é
A. DESIGN RULE CHECKERccccoonvresnvrimresssnsimesraesersstesssoessioe 58
1. Evaluation Of QUEPULScocoververreemmereenereeersrereessnsrssoo, 59
2. EXAMPIScocoovtiiiitii e sttt 59 i
B. CIRCUIT EXTRACTORcooovivminiriimierinsensrnrcsrisssennsinnsesessecnnnennessonenns 84 4
Lo PIOLUNG ..covucreciarinninssntieisasnsecssenssesssssessesesssssssssasssanssesmsee e sssrmon 84 z
2. Defining Nodesc..couvvrriecrinininninniiniiesccsie e 85
3. Creating A SimulationFileccovceerinnrnvneriiicicee 85
4 BXample ..ot 85
C. STATICCHECKERcoovvivitveinreiieneennsecrereniessntesonsensassseresssnssssnesnss 68
1. BEvaluation Of OUtPUlsc..ooveviiinieineneiiece e 68
2. EXamplecooooiiii s €9
D. EVENT SIMULATORcccoooiiiiiiiininerienteereteneseeeteste s et s e 70
1. USIDG ESUML ...oovveveceerrrnnanenasinsssssssrsssesssiesssesseeassessess s, 71
2. BXAMDIEocoovinieiiieitttt e 71
V1. PROJECT: 18 BIT VERY FAST PIPELINED
CARRY LOOK AHEAD ADDERccoccoivniriiiiniiinesieeeninsiet oo e e 74
A. INTRODUCTIONcooormmrmriinriiiiianeieienneeti et et et e 74
B. LOGIC DESIGNccoviviirenrinnsienrisinrestnnsssessesssnseessestereenssssssnesssssssnns 74
1 PIpelnINgocooevvviiiiiiiiiiicci e 74
2. Carry-Look-Ahead Additioncccceveverrvivriveriiireccrere 78
3. Design Considerationscccecoimiiiniiiiieeni e 83
8

Bl S L' ET aWataT W S W W m et et uMom_ NN W N~

* APPENDIX C - SUMMARY OF CLL COMMANDS

APPENDIX D - DESIGN FABRICATIONcccocomiiiiimiinniinreciievececeveecerners e

...

...

" ..{ '- l'

- -

2 S

-

L 4 -wtL - - CRa et MM T B AL M A i S N A S o G ey o e e DA sy
o

A

’ ACKNOWLEDGEMENTS

% We would like to thank the following individuals for their assistance in the

"

A . completion of this thesis:

¥ Naval Postgraduate School

Dr. Donald Kirk

Prof. Robert Strum

,@ Dr. Herschel Loomis
)

Exg Mr. Al Wong

&

¥

Stanford University
Dr. Robert Mathews

Se.s

A Ay

Ms. Susan Taylor

Kf 4y
]

N

Ms. Irene Watson

Mr. Ernest Wood

Air Force Institute of Technology
Lt.Col. Harold Carter

;‘L‘! !fﬂf¥iﬂé

af e

SE ‘.\fi"”‘}‘ Iy

LT
oy’
-

)
R
i P

.?’";e;.- g ~

R~

10

i

I

...................................
...................................
.............................

-
.............

1. INTRODUCTION

Advances in computer-aided design (CAD) and fabrication techniques, along
with the text Introduction To VLSI Systems by Mead and Conway [REF.1], have
created the ability for systems engineers to custom design digital integrated
, circuits. Until recently, the design of integrated circuits has been traditionally
carried out by a select group of logic designers working in semiconductor
laboratories. Systems engineers had to "make do" or "fit in" the products of
these labs to realize their designs. The systems engineers had little participation
in the actual design of the chip. The MEAD and CONWAY design methodology and
computer aided design tools (CAD) have bridged the gap between the systems
engineer and the circuit designer. Now,systems engineers can create a custom
design to support specific needs. Armed only with a knowledge of circuit and
logic design, the present-day chip designer utilizes powerful CAD tools to mani-
pulate basic digital circuits (cells) from a pre-established library in order to
realize a custom design. Additional CAD tools can be used to check, evaluate and
simulate the design. This thesis, along with minimal references to outside
sources, provides a reader who has a basic knowledge of logic design with
enough information to design a custom digital integrated circuit of moderate
complexity.

Before entering the realm of Very Large Scale Integration (VLSI), a few prel-
iminaries must be covered. "VLSI" as used in this thesis should not be confused
with the Very High Speed Integrated Circuit(VHSIC) program in the Department
of Defense. This program with a $400 million budget is charged with advancing
the state of the art for the number of 'devices on a single piece of
silicon,operating speed,submicrometer line width, and other attributes. Present

day commercial VLSI chips are capable of about 130,000 transistors with a

o,
DR «,.
ER AR N

. ~
. .

RIS st T e
2l la Yo g nite e . Y, WO PO, PR S Tor S SO

b it il St S Nl At i R Sl il medl) Rttt e Y T Y
AACHAC NGNS i i St Ay e i il S it Mo el o A il M A S i e SR AR et o5t it St Sinbri ekt ey s —ias 4

typical number of about 20,000. VHSIC on the other hand has set a goal to pro-

-3 RARIORIN _J UL,

duce a circuit containing approximately one million transistors per integrated
circuit by the end of the decade. This thesis deals with devices of moderate com-
plexity, that is, from a few gates up to the size of small commercial products. A
typical number would be on the order of 2,000 to 10,000 transistors. Thus, the
complexity of the devices considered here is much less than that of commercial
and research programs.

X This thesis provides an introduction to VLSI circuitry and procedures,CAD
software resources and their uses,the VAX 11-780 computer (UNIX operating sys-

4

- tem) and other hardware resources available at the Naval Postgraduate School.
In addition, the creation of a 18 BIT VERY FAST PIPELINED CARRY LOOK AHEAD

.

ADDER is traced from conception through the design methodology to fabrication

- and testing. This provides a concrete example so that the interaction between

B, the user,the software and the hardware may be more fully understood.

12

GBI N

.

-

¢-"J".-",‘\,'.' i T R TS R P PR SR e

P P R R R SRR L s S e e e LTe e

B T S T T o T A e o T s T T e T N e e T R A T T TR v
. - R . et e

A INTRODUCTION
* The design methodology in this thesis applies to "digital" systems-— "analog"
systems are not considered. Digital systems inherently use highly regular and

repetitive structures. Many digital devices have data paths sixteen bits wide,and :
path widths of thirty-two to sixty bits are not uncommon. Memory units, arith-
metic logic units(ALU's), shift registers,crossbar switches, etc. all possess uni-
form repetitive structures. Combinatorial control logic in many cases can be
realized using programmable logic arrays (PLA’'s) which are also "highly struc-
tured”. In addition, digital systems operate using a high or low voltage to
represent one or the other of two binary states. The two preceding attributes of
digital systems are not prominent in most analog circuitry and therefore analog
devices do "not” readily lend themselves to the design methodology described
here.

Because digital systems are highly repetitive, highly structured and operate in
either the "on” or "off" fashion, they can be realized by using the simplest of
logic gates. When these simple logic gates are fabricated in silicon, they form a
very regular array of rectangles strategically scaled and properly placed. Even
the interconnecting "wire” runs are rectangles with one dimension (length)
much larger than the other dimension(width). Resistors are realized by the
predictable resistance of a "depletion mode” metallic oxide semiconductor field
effect transistor (MOSFET) whose gate region is connected to its source. Micros-
copic inspection of a high density integrated digital circuit would reveal only
squares or rectangles of varying dimensions and heights. The variation in height
of these elementary figures results from the placement ol layers of conducting

materials onto the surface of the chip.

13

M

a
['y

".?

.40 3"

o dort” Sy 49 e ol

§ O o

-4

+ WY

Y S’

e A O S Y i A S A A A S S il SN G o g o e e st it A e B et 4l B AR A ne e
- % " R At T AT et e Nt AR P S T =

Integrated systems in nMOS technology contain three levels of conducting
material separated by intervening layers of silicon dioxide(insulating material).
They are from top to bottom: metal.polysilicon, and diffusion. All three paths
conduct electricity well enough to be considered wires. Unless the layers are
specifically intended to be electrically connected by using contact cuts,paths on
the metal layer have no significant effect on the "poly" or the diffusion layer.
But, when a path on a poly layer crosses over a path on the diffusion layer an
"enhancement” mode MOSFET is formed. This transistor is effectively an elec-
tronic switch Various forms and interconnections of this electronic switch pro-
vide the basic building blocks from which large scale systems are designed.

The n-channel MOS process is by far the most mature process in the field of
VLS]. Most devices now produced use nMOS processes, but there are also other
processes. For example,pMOS stands for p-channel MOS (the “p"' denotes positive
type carriers in the channel beneath the gate area as "n" signifies negative type
carriers). CMOS denotes complementary MOS which utilizes a combination of the
two for individual devices. And "mixed"” MOS utilizes "n" and "p" MOS at different
locations on the device. CMOS-SOS is CMOS but is formed on a sapphire surface
to increase the operating speed (SOS signifies silicon on sapphire). Bipolar
transistor architecture also has a place in VLS. Since the nMOS process is the
most established, and because the project created in this thesis is of the nMOS
type, we shall concentrate on it. This should not imply that nMOS is the best
method. Other processes may be better in terms of power
consumption,speed,device density etc. However,complexity in the actual fabri-

cation and design may outweigh some of these more desirable traits.

14

......

.‘.W
B %Y ‘”"’*

A,

e

B. VLSI CIRCUITRY
Mead and Conway [REF.1] provides an excellent discussion in chapter one

concerning the basic devices and circuits needed to understand and solve typi-
cally encountered systems problems. A full and complete understanding of this
chapter, however, is not a necessity to be able to design a custom chip. Most of
the devices and circuits discussed in chapter one of [REF.1] will be presented in
the following discussion which should provide the depth necessary to continue
and successfully complete a custom design.

1. Basic Transistars
The nMOS transistor is the most basic device used in VLSI circuitry.

Shown in Figure(2.1) are three different representations of the same device.

A positive voltage on the gate of an nMOS transistor is used to control the
movement of negative charges between the source and drain. When the voltage
on the gate enhances the quantity of negative charge carriers(electrons) under
the gate in order that current may flow between source and drain, the device is
labeled an enhancement mode transistor. The enhancement mode transistor by
itself is effectively a switch and is referred to as a "pass” transistor. When a posi-
tive voltage is applied to the gate, the switch is closed. When a voltage below a
certain threshold is applied,the switch is open. When the area under the gate
region of a transistor already has enough negative charge carriers to support
current flow between the source and drain with no voltage applied to the
gatethe device is called a depletion mode transistor. The excess supply of
charge carriers is supplied by a doping process during fabrication. The area of
excess carriers is called the ion implant region. The depletion mode transistor is
always on unless a voltage of proper polarity(negative for nMOS) is applied to the

gate to deplete the number of charge carriers, thereby turning off the switch. In

the enhancement mode device the region under the gate area must be enhanced

Ry

xR

PN

A

DRAIN IGATE

. %SOURCE | E

S POLY

6ATE Si0.

¥ 51
= f SOURCE oRAIN___~)
2 ¢ s/ CHANNZL s 24

;{‘g \ N-TYPE __/

e (DIFFUSION)

] q - ~
o) .& : ;_ﬁ L3
’

Figure(2.1) The Basic nMOS Transistor

;‘.“1 ¥

Py

16

o
?'f '
S

to turn the switch on while in the depletion mode device the region under the
' :] gate area must be depleted to turn the device off. In a pMOS device, the opera-
:‘s tion is identical except that the charge carriers are "holes" and voltage polari-
: . ties are just the opposite of that required for proper nMOS operation.
¥ 2. Basic Gates
‘;J The basic inverter will now be discussed. Using an enhancement mode
B switch (pass transistor) in series with a resistor, an inverter gate can be real-
‘-", ized. In VLSI design, however,resistors are not used. Instead, resistance is gen-
| erated by a depletion mode transistor. To ensure that the depletion mode
%1 transistor remains in the “on” mode, thereby effectively introducing a predict-
'3" able amount of resistance as the load,the gate is connected to the source. A
:"‘: i resistance made of polysilicon or carbon would take up far too much area on the
. surface of the chip to allow reasonable densities. The amount of resistance intro-
2N - duced by this continually switched on transistor is largely determined by the

size of the gate and ion implant region. More important is the ratio of the gate

geometries of the depletion mode ("pull-up") transistor to the enhancement
R mode ("pull-down") transistor. By obtaining proper ratios for the
:5 depletion/enhancement mode transistors, an inverter circuit can be produced.
The output will be the complement of the input. Shown in Figure(2.2) is the basic
inverter in several forms along with extensions that realize the NAND and NOR
33 functions.
3 3. Basic Circuitry
Many applications require that the output of a basic inverter drive more
,‘1\ than one following circuit(fanout). In this case, because of the much larger com-
\,q bined input capacitance, more drive current capability is required. Again, mani-
pulation of the basic inverter produces both inverling and non-inverting "super
“I: buffers”. These are high performance circuits used to reduce the delay time
o

ol
1?7

.t NIRRT i v gwY T ot ™ —— -~ Ty -~ |
- LI T A S AL SRS Bl i e A Al Ak -l i bl Sl ol Y e §
LR S Al ol i £ S SO il e B el S e LM it e A e e T e e

YoD DEPLETION

. ~— WNODE ~ !Jv”

N
4 X

X [...__ENHANOE“ENT\

\ GND

>
:‘j NOT GND

e 3 GND

Figure(2.2) The Basic Inverter with NAND and NOR extensions.

18

-

CHERNE S

QA:'.-

Y]
S et N A

"
b

PP

v o
'MJJ.J.L'J.

oty o tat AR P 2

s)l e

XAV LS

1

:
;

that is induced by the increased RC time constant when fanout and parasitic
capacitances cause the equivalent capacitance to increase. The extra drive
current capability is obtained from proper interconnection of two standard
inverter gates. See [REF 1], Figure 1.21 and 1.22, for a schematic representation
of inverting and non-inverting super buffers. To emphasize that nearly all cir-
cuits can be constructed through the proper connection and adaptation of the
basic inverter gate,a few additional examples will be discussed. Shown in Fig-
ure(2.3) is the cross-coupled inverter circuit. This circuit has many applications
in control sequencing.memory cells._and register arrays. A programmable logic
array (PLA) is shown in Figure(2.4). Normally, PLA's are thought of as having an
AND plane and an OR plane. Careful analysis shows that the PLA is made up of
nothing more than pass transistors and inverter gates. Actually,this PLA imple-
ments the NOR-NOR canonical form of Boolean functions of the inputs. By prop-
erly lfeeding selected outputs back into selected inputs,a synchronous finite
state machine results. PLA's prove to be very important in system control
sequences. One of the CAD tools which is discussed in a following chapter is
called PLAGUE, which stands tor PLA Generator Using Equations. By inserting
the Boolean equations in the proper format, the software tool determines the
proper placement of the elementary figures(rectangles) to realize the desired
logic in silicon. PLAGUE can realize combinatorial logic on the order of 40
inputs,40 outputs and 150 product terms. [REF.1] provides excellent information
on PLA's and their uses. The design project which is the subject of this thesis {a
sixteen-bit adder) relies heavily on the use of PLA's.

Referring to Figure(2.4), an implication arises when observing the input
and output "registers’. Clearly, if the input and the output registers are made
up of nothing more than pass transistors and inverter gates,then to truly be a

register,some type of storage mechanism must be involved. This is indeed true.

19

a- . s

R
i
<
N
N

e N G AP AR P AN A A Sl S R I B AL AT DA A N it e et T et SR SN S T R 0 S A A e D A I S R |

. .] Ao]») voD
2 —iL —

7] C

JGND GND

Figure(2.3) Cross-coupled Inverter Circuit

L AND

'
'
e PLANE :
*’1‘1 vDD : 1 1 II vDD
B ' O (oW |
% o T !
B = TR 1 e
& ' R:
e : rs | 4
: §: '{ ﬁ | N T u:‘&m ¢2
u ! .
> Z — 11
, ! '

O

. l
5'3 A . Z| Zz 23 zd

L Figure(2.4) Inverter Realization of PLA

S L s
IR0 AR

7,

207 Sfd

Sl

v

[

i

w._,~
¥ ag s AL

R
¥

)
L.

(B

I A
& ‘» * s Y
A Cannate

h ‘c_‘..f‘ [(AXF

—

When a positive voltage is applied through an “on" pass transistor to the gate of
the inverter circuits, the capacitance between the gate and the substrate is
charged and maintains the charged condition for a flnite amount of time after
the pass transistor is turned off. The "turned off"' pass transistor represents a
large amount of resistance. This charge will decrease in an RC time constant
fashion. The amount of time for the gate voltage to decrease to below threshold
is on the order of milliseconds. Threshold voltage is that value of voltage neces-
sary to be considered a "high" voltage thereby causing the output of the inverter
to appear as a "low” voltage. Thus, for proper operation, the dynamic registers
must have their inputs updated and outputs utilized at a clock period less than
this "bleed-off’ time of the charge stored on the gates. For this type of PLA
input/output register scheme,the clock period cannot be too low, or erroneous
results may be obtained. The upper clock frequency is limited by the amount of
time it takes for the basic inverters in the NOR planes to switch to the proper
output voltages once the input voltages and clock pulse are applied. There is a
detrimental effect when several inverters are cascaded in series as well as in
parallel (fanout) - the voltage must be given time to ripple through all levels ot
logic. The time it takes to charge up the additional parasitic capacitances and
logic gates to realize the proper output is the limiting factor for the maximum
clock rate.

To overcome this cffect of charge bleed off, an inventive "refresh” scheme
is utilized in the selectively loadable dynamic register cell shown in Figure(2.5).
Using the control signals LOAD and phase 1 of the system clock,this scheme
allows the register cell to be selectively loaded and "refreshed’. This alleviates
the problem of the voltage dropping to below threshold. This circuit may be used

to solve many of the storage applications needed in VLSI systems.

21

b TS

d

LI ~ N et A, A

Thus, nearly all functions needed to realize a digital system can be
obtained by manipulation of the basic inverter circuit and pass transistor. The

next step is to become familiar with the design methodology.

)

o | =
LoD :D—J_
ml

1

I~

Figure(2.5) Loadable Register Cell

C. METHODOLOGY

There are several reasons for developing VLSI digital systems. A new need
may force the creation of a custom designed system.It may be required, or
desired, to condense the size of existing designs, usually in the form of printed
circuit board systems, for other applications. Also, improvements in V1SI tech-
nology may allow already functional chips to be made smaller, thereby allowing
more functional units to be placed on a single chip. For whatever reason a sys-
tem is developed, the design usually begins in the mind of an engineer. Existing
functional units such as shift registers,memories, ALU's,PLA's.flip-
flops,etc.normally provide the building blocks for the design. New functional

units, along with unique methods of interconnection, usually appear in a more

"skeletal” form to clearly define the unit’'s purpose. The CAD resources available

™
-
N
"
-

y

s

2 s I LR SR AT I AR i s K St Ll e A S L A N RS ~ 2
;
2,
14
:
: to the engineer determine where the pencil and paper approach to the design
can be replaced by ever improving CAD tools.
1. Layont
. Since VLS] designs deal almost uniquely with inverters and pass transis-
tors, it is not necessary to initiate the design at the schematic level. Rather,the
skeletal form that is mostly used is called the “stick” layout or design method.
The stick method involves the color coding of the different conducting materials
,-,- used on the chip. Green is used for diffusion. Red is used for polysilicon. Yellow is
for the ion implant region. Blue stands for the metal layer. Black represents a
o contact cut. In some cases logic symbols are also used in the stick diagram. This
% »,, skeletal form is known as mixed notation. For good color examples of the stick
‘_’ . and mixed notation and the corresponding geometric layout refer to [REF.1]
& color plates 4 through 8. It should be evident from these color plates that wher-
29 . ever a red poly path crosses a green diffusion path an MOS transistor is formed.
3;; Slmi_larly, where red crosses over green which in turn crosses over yellow, a
-" depletion mode transistor is formed when the gate region is connected to the
source. The stick methods was mainly developed for hand layout.
$ However,recent advances in CAD tools and color graphics terminals, allow the
32 stick method to be readily adapted to computer design thereby alleviating the
pencil and paper approach. Using these sophisticated design tools, stick
:'.% diagrams can be drawn and manipulated directly on the color terminal to real-
f' g ize the design. When the designer is satisfied with his creation, the stick diagram
‘.* . can be automatically compacted (observing critical design rules) and mapped
; into the geometric rectangular layout necessary for fabrication. Designers not
:; : having access to this level of sophistication must rely on a balance between the
- pencil and paper approach and CAD at this stage of the design.
7
2 e
8

ey P e yr— -y - v
M e B Me T . AT, B A ~vlﬂ.‘.w_‘-. AN :s"' el ATMAN ALt AL AU T r e

v

2. OGS
CAD tools exist that provide a valuable link between the pencil and paper
approach and the CAD portion of the design. These tools are not necessarily
related to VLSI design. 1LOGS is an Interactive LOGic Simulator. Before "charg-
ing" into the realm of VLSI layout,circuit extraction,stipple plots, refinement of
the layout and simulation, it is wise to emulate the design using ILOGS, or a simi-
lar tool, to verify functional correctness. For smaller designs, or when the
software resources are highly sophisticated, this design verification step may not
be absolutely necessary. Nevert.hqless. successful emulation of the design
invokes a sense of confidence in the designer. It is highly recommended that the
first attempt at custom VLSI be initiated with a verification of the design using
ILOGS. The project (18 BIT'ADDER) was initially verified using this method. A
description on how to use the ILOGS program is discussed in chapter six.
3. Design Rules
A key point in VLSI design methodology will now be discussed. Design
rules are layout rules that result from analysis of semiconductor physics and
fabrication processes. It is not necessary for the systems engineer to be
thoroughly cognizant of how the rules were developed. It is necessary.however,
for the designer to know what the rules are and to abide by them. Design rules

are geometric constraints placed on the basic rectangles concerning minimum

allowable separations,extensions,widths,and overlaps in the various levels of the
chip. Since various processes in creating VLSI chips are improving and ever

decreasing in feature sizes,it has become convenient to develop these rule in

0%

terms of a "length unit” denoted as (A) lambda. Present day nMOS processes are

A AL

typically 2.5 microns(um). Another way to look at this length unit in this case is

AN
AR

A=2.54m. When using a 2.5 micron process, for example, the minimum distance

allowed between two "wire"runs of poly is 2 times lambda or 5.0 microns.

C.\"l.f.("'.

A% N

L

NS

“

’ 4

AN - v A]
« .‘!:‘ R , .l.:n.';‘O :u_:l:»'" % N

b 8, 88
, ‘{'.; r

VN

s

AN

1R

A

o o
o
(o
“»

P AR

However,when the process is improved/decreased to lambda = 1.25 microns.the
rule of 2 times lambda separation still applies but now the actual distance is 2.5
microns. This results from the fact that every dimension on the chip has also
been scaled down accordingly. See [REF.1] color plates 2 and 3 for an excellent
description of the basic design rules.
4. Building Block Approach To VISI Design

A VLSI system can be visualized as a large complex puzzle with the pieces
located in a box called the cell library. The cell library consists of pre-designed,
pre-tested cells in geometric forms that have been created by VLSI design
engineers. Some of the cells may be very basic while others may be quite com-
plex. For an excellent description of several cells contained in most libraries,
refer to color plates 9 through 15 of [REF.1]. Plate 9 shows the correlation
between the stick diagram and actual hand layout of a basic shift register cell.
The task for the systems engineer in order to realize the custom design is to
select,adapt,replicate, manipulate, and orient the proper cells to form functional
units. These functional units are then properly positioned and interconnected to
each other and to the outside world (through the use of bonding pads) to com-
plete the puzzle.lt is this building block approach to VLSI design that provides
the strongest connection between the chip designer and the systems engineer.
It is assumed that the reader has access to a cell library as well as the neces-
sary CAD tools before attempting a VLSI custom design. The exploration of the
design and construction of the cell library is beyond the scope of this thesis.
Here we are oriented towards the use of a cell library with assorted CAD tools.

5. CAD Tanis

Chapters three,four and five are devotéd to VLSI-CAD tools. However,for

continuity, a basic explanation of several of the basic tools is provided in the fol-

lowing sections.

......

%A
%
b a. PLA Generator
. The purpose of the PLA generator when used in conjunction with the
‘ '1" PLAGUE software is to create a PLA cell that can be added to the existing cell
s - library. This PLA cell can then be manipulat.ed.adapted.o;'iented etc. as any
; f::':' other of the library cells.
-f' b. CLL-Chip Layout Language
::;' CLL is the software tool that provides the capability for the manipu-
. lation, replication, adaptation, orientation, and placement of the various cells.
.,_E It also provides a means of interconnecting the functional units with each other
?" and to the outside world through the use of the "wire-list” commands.
_‘ c. DRC Design Rule Checker
: N The final design is scrutinized by the design rule checker. It will
make known to the designer if and where any of the design rules are violated.
_“3 Even at mini-computer speeds,this program'’s execution tizie s rather ieagthy.
3 d. Circuit Extractor

-: The circuit extractor is used to define nodes in the design in order

.‘ to perform a functional test or simulation.
$- e. Simulator
'\: The simulator uses node deflnitions obtained in the circuit extractor
, portion and processes information received from the designer. The designer
;:5; inputs information and looks for expected results. In the case of the thesis pro-
‘.." ject, two 18-bit vectors consisting of 1's or 0's are used as an input and the sum
. of the two input vectors is expected at the output nodes(provided there are no
-.’: errors in the circuit). .

‘_: - The above tools may carry different names and exist at different lev-
, els of sophistication, but they represent a reasonable cross section of Lthe avail-
.EZ: able VLSI design tools. CAD tools will be discussed in detail in later sections.

XN
L

Ll
‘. - :

i 7

AILIE

‘;;4._ o

P

Sa
«

) ..
Sarars!

I W' §

Lo A AL

[AT RS ~ s

l. l' l.*l ..
e e

[J
ae

L
Y
A 8 a

Pt
4
a

- l A A
e,

»
v tetts

CAAAAR
.A“. : .J..A. .o‘ -t

0
Y TS St
SR

D. FABRICATION
Upon completion of a successful design rule check and a correct simulation of
the design.it is reasonably safe to assume that the design is ready to be fabri-
cated. To this point, nothing has been mentioned about how the design arrives at
the implementation service,the form in which it is sent,or what events take
place after the design is delivered.
1. Eile Generation
One of the products of the chip layout language tool is the Caltech Inter-
mediate Form file (CIF file).The CIF file is a standard machine readable form for
representing integrated system layouts. Its purpose is to unambiguously
describe the dimensions and layer of each geometric figure (rectangle) to a pat-
tern generator.

2. MOSIS

MOSIS is an acronym for Metal Oxide Semiconductor Implementation Ser-
vice. This is the institution that receives the design in the Caltech Intermediate
Form. The standard means for communication between MOSIS and the designer
is the ARPANET (Advanced Research Projects Agency Network). The CIF file is
transmitted directly from one computer to the other over standard telephone
lines. The implementation service,after several preliminary checks,forwards the
CIF file to a maskmaking company.

3. Pattern Generator and Maskmaking

The pattern generator is a very sophisticated computer driven photolitho-
graphic device that accepts the CIF flle as an input. The pattern generator con-
verts the CIF file to a Pattern Generator file (PG file). The PG files are then
used to create the masks through a very delicate "flashing” operation. This flash-
ing operation causes the positions and the dimensions of each layer of rectan-

gles to be imprinted on photo-sensitive material. This material is developed and

Y U P

P RRCAACRA Wil iy i i i R A A S

then reduced in size. The reduced "negative” is replicated many times in a step-

and-repeat fashion in order to produce a template of many identical designs of

-
.
*e
>
ey
-
)

‘
1
1
*
)
b
»

\ individual layers of rectangles. The individual designs lie abutted to each other
L_) in a side-by-side and top-to-bottom configuration. This template is used to

develop the "working” masks, which are then utilized in the fabrication process
to pattern the design into the silicon wafer.

4. Patterning

j The working masks selectively allow an intense source of radiation, in the

* form of ultraviolet light.electron beam (E-beam), or low energy X-rays to
~ impinge upon the appropriate layer of the chip surface. This selective exposure
{, to radiation causes a chemical reaction in an organic material, called "resist",
:j previously coated onto the chip surface. The exposed resist can easily be
3 removed while the unexposed resist cannot. After removal,acid etching is per-
y . . formed to pattern the design into the silicon. The nMOS process requires
approximately forty-four steps to complete the finished chips.

'."f 5. Packaging

:',.) The final step before mailing the completed chips back to the designer is
*'2; packaging. The waler is diced into individual chips. Each chip is cemented into a

. package. The bonding pads are connected to very fine wires which in turn are
.'i connected to the package leads. A top cover is then bonded over the chip. The

:‘_3: completed design is returned to the customer. The time period from CIF file

, submission to chip receipt is normally three to six weeks.

>

3 E. TESTING

i ' There are basically two types of testing that can be done and they depend

7 largely on the resources available to the designer and the complexity of the
’:: design. Commercial testers are available. They are very thorough, but
i

-
‘e
-

R

b
-

— 28

........
......................
. - .

-
R

2%,
_4.'4.!‘.' L

NN
Wy

MJ)

N 8;",:'1'."_.
A A L A,

Coay

: ' SRAA
LA LERECSC

1A
..‘.1'

b
IS
]

L
(P

expensive. A company in the business of VLS] design may very well benefit from
such a tester. They not only can test various chips for proper operation,but can
also aid in the location of a design/fabrication error if one should be present. A
custom made testbed is sufficient for many applications, provided that the
design is not too complex. The design of a custom testbed, however, could easily

become more expensive and time consurning then the actual VLS] design.

F. SUMMARY

This chapter has provided a brief, but rather complete, overview of all aspects
of VLS! design. The remaining chapters and appendices provide detailed infor-
mation on specific software tools,hardware resources ,and custom VLS| design
methodology. The step-by-step approach utilized to a great extent in the
remainder of this thesis should provide the reader with enough information to

embark on a custorn design.

B e s A A T RTT AART TRT R P RS P L AT T T TR
. i
: i
|
5 a
35 i
’ Ol. VLSICAD TOOLS i

? 3
?Y ' q
:31 _ Prior to attempting a VLSI] design using the NPS CAD tools, the designer '
Y,

N must have a “working” understanding of the UNIX operating system and c-shell |
.,', commands. If this is not the case, he should read Appendix A and complete the]
ey [

‘3 included tutorials.

Various source programs comprise the CAD tools which are used to complete
a VLSI design. These programs ensure that the output file is in the proper for-
mat and that the chip will be successtully manufactured. In general, these pro-
grams work most effectively when used in the prescribed order. (See Figure 3.1

‘N for a flow diagram of the design process.) The project is first conceived using a

2‘ . “top-down" approach (i.e., the overall project is conceived and then broken into ?

B lower levels for individual design). Then, if the project is designed using a '

N “bottom-up” approach (i.e., if the lowest level cells and functional units are)

designed and checked prior to forming the total design), the task will proceed

s more easily and with less time invoived. i

. In order to aid the designer in utilizing the CAD tools effectively, a functional 1

: description of the source programs is provided in this chapter. Caretul atten- :

5 tion to the following paragraphs will allow the designer to understand and use i
the VLS] CAD tools. I

A LOGIN PROFILE

3 Each user of the VAX computer has a standard login profile (executive) pro-

, V gram which is established by the CS Department. This program is executed

’ . each time the user logs into the system and it controls the functions of the ter-

"' minal. Although this profile is sufficient for using the system commands, the

AD;JL‘;‘ ol
A _*_°

R, CREATION OF LAYOUT
9
b,
. |
GENERATION OF CIF
) (CLL)
.: *
‘ DESIGN RULE VERIFICATION
», (DRC AND VISUAL WITH PLOT)
4
A
| REDESIGN
: (IF NECESSARY)
.‘.»
§
STATIC ANALYSIS
N (STAT)
l
1
= REDESIGN
(IF NECESSARY)
|
J
- SIMULATION
- (ESIM)
| l
3
$ REDESIGN
N (IF NECESSARY)
1
1 FABRICATION
N Figure 3.1. VLSI DESIGN PROCESS
i
g
N
X 31
.\

W N .
L T T AN AT T e et LR I R
ORISR T T W I N S IO AR I AL N UL IR

designer should obtain, by the steps described below, the standard VLS profile
in order to use the CAD tools.
The login profile is stored in the user's “login" directory under the name of

: . dogin and is not listed with a normal ls command. (It can be listed with als a
3y command which lists all files in a directory.) The VLSI profile can be obtained by
“
" performing the following steps:
W 1) Change directory to /visi/lib/local/work
. cd /visi/lib/local /work
; 2) Copy .login to the "login" directory
N cp .login /work/(user-name)
X 3) Charge directory to “login"” directory
e 4) Log off then log back on.
? Now, each time the designer logs onto the UNIX system, he will be able to use
yg the VLSI CAD tools. Additionally, the DEL key will delete previously typed char-
% acters (similar to <CTRL>H) and a "period” (.) followed by RETURN can be used
i to logoft.
3
7!
o B. FUNCTION OF SOURCE PROGRAMS

The source programs used for VLS] design allow the user to generate a Cal-

tech Intermediate Format (CIF) file, check the file for design rule errors, stati-

;k,' cally check the circuit, and simulate the design to ensure correct implementa-
- tion. The time involved to complete each of these steps depends both on the
3

}' complexity of the design file and on the actual tool being used.

::3 1. Chip Layout langnage (C11.)

= The heart of the VLSI CAD tools is a set of source programs obtained from
ﬁ . Stanford University which combine to generate the necessary CIF file for design
e

f; fabrication (using the nMOS process) from an input in the form of a Chip Layout
<5

Language (CLL). "CLL is a simple chip layout language, intcnded as an alternate
;.' to Caltech Intermediate Format for direct coding of layouts."[Ref. 5, p. 1] CLL s
y

"

a2

FhhadE L R R A Lol sk Sl M L R S A A R A T i A RN T S S A PR |

1
L |

ARY &M

) a high level language which makes the task of designing a VLSI circuit easier

- T B)
% _J N NN

than direct coding in CIF. It is written in the “C" language.
CLL has the following advantages:

-t

h 1) It encourages bottom-up design by allowing small circuits to be
developed and tested prior to being called by the "central” program.

WA .4 TR

2) It simplifies the design process by using defined commands which
are easily memorized and used.

SRR X L SA

1
1
]
o

3) It allows calls to stored library cells which have been validated
and tested.

4) 1t takes advantage of redundancy by allowing iteration of successive
calls.

5) It is intended for lambda-grid design which eliminates the
problem of changing scales.

Y e P o X%

A€

The disadvantages of CLL are that it is capable of right-angle designs only and
that it depends heavily on the designer's ability to develop a layout which is logi-
cally correct and geometrically compact.

The processor for CLL is the program cll. As can be seen in the manual
page for cll (Appendix B), its basic function is to process the cell library exter-
nals and user written .cll files to create a .cif file in CIF. The library externals
5 are a set of designed cells in CIF which have been combined into one library file.

The objective recommended for the designer is to construct various files in CLL
- format using this library (if needed), along with custom designed cells, and then
use the CLL processor (cll) to obtain check plots and a complete CIF file in out-
put format. The specifics of this task and the use of the defined options for all of
the source programs will be explained later in this thesis.
Y The CLL processor uses several programs to complete its tasks. Gen-
erally, these programs operate automatically through control of the CLL proces-
! sor, which consists of a command program (cll) and a CLL compiler (cll2). Tol-

. lowing is a list of these programs and their general functions. The manual pages

Y

YA

s nra s sl
LS PLIA I

A
-

k)
L. e

3
¥

A a
L]
5

LTI
r e

-
¥4

et o ko

...,
o .'.':“.‘f &

')

15

atdte

‘e
.
»

¥4y

U 19 .-‘3;_')!3\.4_ _~

3

R e A O O AR RCAG MR AR

for these programs, which are given in Appendix B, can be called with the man
command.
a. Cif
The cif command will cause the input .cif file to be converted to a
cifout format so that it can be plotted at the GIGI terminal or the Versatec
plotter. That is, it converts a file from CIF to binary form. This program can be
run independent of ell. The cifout file format (file.co) is documented as CIFOUT
in Appendix B.
b. Cificad
Cificad is called by cll (or can be used independently) to concaten-
ate all of the .cif files that are given as input along with any library CIF files that
are needed to produce the total CIF file.
c. Merge
For cases requiring the merge (or concatenation) ol cifout files
(sorted or unsorted), the merge program is used. The sorted cifout file is
labeled file.sco while the unsorted cifout file is given the label of file.co. Cll uses
merge to combine the sorted cifout file of a design with the unsorted cifout file
generated by the Design Rule Checker (DRC). The program can also be used
independently to merge several .sco flles for a combined plot.
d. Rplot
Rplot is the program that allows the designer to plot the design (or
part of it) on the Versatec plotter. When used by cll, the sorted cifout file is gen-
erally scaled to a size that can be plotted by window.
If used independently, rplot option -i will scale the plot. This pro-
gram can be used to plot any sorted cifout file for geometric and design rule

visual verification.

LAifah S 8. B 8. . . c‘EHeema S _F_"_ _ . & aEA A & A

A R s,

ad ol abak

%
-;.w o. Reort
::: . In order to sort a cifout file so that it can be plotted, cll calls rsort.
2:5 Any cifout file that is to be plotted must be sorted by x-coordinate due to the
~ N requirements of rplot and the Versatec.
\‘:. The tplot program generates a terminal plot (in color) on the GIGI
‘ terminal. The input must be labeled as a sorted cifout file (file.sco) even though
the terminal does not require a sorted input. Tplot can be called independently
" or through cll. It should be used for quick checks of modifications to a design
(since the Versatec plot is time consuming). Window is also called to scale the
plot if tplot is used through cll.
{:;3 Both rplot and tplot receive scaled data from window when they are
' - called by cll. (This occurs only if the - option is used.) Additionally, window is
{.. capable of picking a selected portion of the total cifout file for plotting. This is
::: particularly handy for a det.ailed plot of a small section of a large chip design.
";« 2. Supparting Programs
:ix: In addition to cll and its associated programs, there are a few programs
:."‘:f that can be used to aid in the completion of a VLSI design. These programs run
independently of cll. They are documented in Appendix B and can be called with
the man command.
- a. Cifar
o The cifar program allows the designer to develop an archive of CIF
- :CE cells (flles). This is very helptul in creating a library of “"custom" cells which can
E:. . be called in the main design file. This librarylcan then be made a permanent
. record for future designers.
o
!
oY)
35

e ™ AU A T R N N I O I S e R S

” o
".‘.')f..'.\o' LA NP

---------- .-

Tag e A ey e
“f‘v‘ e L. T .

e -
Wt

P . RS
T T Su D, I I R Ve I TR T RO SRS T N)

b. Convert
In order to make any sense out of a cifout file (sorted or unsorted),
the file must be converted from its binary form into ASCII form using convert.
This program can be used to find a problem in a cifout file that will not plot. The
output should be directed (>) into another flle name. To get this file back into
cifout format, it must be converted back into binary form using unconvert.
c. Plagen
Plagen is a program that allows generation of a Programmed Logic
Array (PLA) from a set of input and output specifications. Since a PLA is a very
"regular” circuit, it can be used effectively in VLSI design. The PLA can be gen-
erated directly with plagen or indirectly using plague. The output is a CIF file
which can be used as an external file to be called by the main design file.
d. Plague
To generate a PLA using output equations, use plague. This function
converts the output equations of a PLA to the required inputs for plagen. There-
fore. its output is usually pipelined directly into the plagen program.
e. Unconvert
Unconvert is used in conjunction with the convert program. It con-
verts an ASCI] flle into binary cifout format. Its only use is a conversion after
convert has been used to read a binary file.
3. Design Rule Checker (NRC)

As the feature sizes of integrated circuits diminish, greater importance
must be placed on design rules. Separation and width errors could easily prove
disastrous in an otherwise functional circuit. For this reason, the Design Rule
Checker (DRC) should be used to indicate any design rule errors.

After a circuit has been designed and a sorted cifout file has been pro-

duced (using cll), the designer can determine the presence of most design rule

‘‘‘‘‘‘‘‘

S

i |
)

";; errors using the DRC. The DRC specifically checks for minimum separation and

-:ja' width errors within each layer. To do this, it must first determine any connec-
' tivity within the circuit. (Two poly rectangles side by side are a larger rectangle,
:;’I . pot a minimum separation error.) However, it does have its limitations. For)

example, if two rectangles on the same layer cross, a short will exist which is not
‘ detected by the DRC. Additionally, if a contact is not fully connected, spurious
errors may result.

._; The DRC processor is dre. It is documented in its manual page (Appendix

'3 B). Again, this tool is composed of several source programs which perform vari-

:: ous tasks of this extensive design tooi. Since the source programs run automat-

o ically and are not used independently. they will not be covered in this thesis.

:,':' As described in the manual page, the output of dre is stored in file.drc.

:-"; . Additionally, a cifout file is generated {file.co) which can be merged with the f
2 sorted cifout file and plotted on the Versatec or terminal so that the designer L
,‘.:E can locate the source of any design errors. The normal procedure is .to deter-
“': mine the source of any design rule errors, correct them, and then run the dre

a program again. Once all errors have been eliminated, the circuit can be

,,.‘ simulated.
33 4. Circuit Extractor

X Prior to simulating a generated CIF file, it is necessary for the designer to

.\ convert the file into a representative circuit with defined node numbers {or
names). This is required of most simulators. To do this, there are three pro- r
'," grams that are used. Each of these programs is a c-shell file (Appendix A) which

': calls one or more source programs to complete its task. Since these source

;q programs run automatically and are generally not used independently, they will
not be covered in this thesis. The three c-shell programs are documented in

Appendix B and are further explained in the following paragraphs.

YN =,

P

Rl

P

¥

RS ST

oAb @

il i S I A

a. Extract

The first step in circuit extraction is to convert the CIF file into a
circuit with associated node numbers as reference points. These node numbers
are assigned by extract with each different logic level having a separate node
number. Extract also generates the necessary output files for plotting. A plot
can then be made using node-plot.

b. Node-plot

The plotting function for an extracted circuit is node-plot. The out-
put is a Versatec plot (the terminal cannot be used) of the designed circuit with
nodes labeled. The dot (stipple) pattern for the different layers is not the same
as that of the cll output, but this should not cause much confusion.

The purpose of obtaining this plot is to allow the designer to define
node names to be used in circuit simulation. Once the numbers for the desired
nodes have been obtained, they can be combined with appropriate names in the
.Sym flle. As a minimum, the power node (vdd) and ground node {gnd) must be
defined.

c. Sim

The last step in the circuit extraction is to generate the simulation
fle (.sim). Sim is a c-shell program (Appendix A) which converts the .sym.,
‘node, and .cap files into the format required by simulators. The output file sim
file can then be checked using the Static Checker (stat) or simulated using the
Event Level Simulator (esim).

5. Static Checker
Prior to trying an actual simulation, it is generally advantageous to put
the design through a Static Checker. Stat will perform "two major tasks, check-
ing gate ratios and looking for switch logic driving switch logic, as well as other

tasks of less importance."[Ref. 6, p. 7] This step in the design process gives the

———y — TN ¥ - — —y .y —— R TTY TIE T W —w T w m vim v = —w —w cwrlm e tm o o
AR AR A T S N A A A SN 0e " A A A e R N ;

PR et 3 RARERAPA AFER A I ACE At St Ame dhe- diatd T v T T

designer more confidence in the design of new cells but is of little use if only
library cells were used. Stat is documented in Appendix B.

6. Exent level Simulator

After a designed circuit has been “extracted,” it can be simulated using

el el S A

the processor for the Event Driven Switch Level Simulator (esim). This is an
important step in the design process since it assures the designer that the cir-
cuit will perform to logic specifications. Although this simulator does not test

for timing problems (such as rise and fall times, or race conditions), it does pro-

Btk b SN el . ie B ARG

vide a good test of the logical accuracy of the designed circuit.

Esim is an interactive program which expects inputs from the user. The

allowed inputs are described in detail in the manual page in Appendix B. After

the design has “passed” its simulation, it is ready for manufacture.

39

-~ ca . TV . -) - . . ~ _
] 2a3n o dndtdnbdb i A3 A y ST T W S AR AT WS PP SIS PP TR |

? Once an integrated circuit {chip) has been designed, simulated using a logic
R simulator (eg, ILOGS), and hand drawn as a geometric layout on lambda grid
o using the methods established by Mead and Conway [Ref. 1], the designer con-
‘_3 verts the chip into the Caitech Intermediate Format (CIF). This format is

= required by most fabrication facilities. For anyone who has attempted a direct

conversion from layout geometry to CIF, the task is tedious, time consuming,

J' and very susceptible to mistakes. An alternative route is to use the Stanford

J: Chip Layout Language (CLL).

- The CLL processor (cll) produces an output CIF file that can be sent directly

:_ to a fabrication facility. However, since it does not automatically check for

‘. design errors, additional checking is required. If the designer adheres to the

following guidelines, the task of converting a geometric layout into a CIF file is

.'2 much easier and less time consuming.
:

A TUTORIAL L

‘ "CLL is a symbol-oriented language”{Ref. 5, p. 4] This means that the
: designer should divide his chip into a hierarchical structure and build each level X
- as separate units with the “higher level” units combining the "lower level” units. ‘
;. The “top level” unit then creates the entire chip. I'or example, consider the fol-

\ lowing structure: .
> A '
|
- | | |
X B c

» —— L

T .
0

By

The units (symbols) D,E,F.G are converted to CIF first. D and E are then com-
bined (possibly with additional geometry) by symbol B while F and G are com-
bined by symbol C. The total chip is created with a "call” of B and C by the
"main" file, A.

To allow this hierarchical “bottom-up” approach, CLL uses a high level
language format which is an extension of the programming language "C." Each
symbol, as well as the "main” chip file, will be a “C" file (Appendix A gives this
format.) written by the designer using CLL and given a label of file.cll. The CLL
processor can then be used to convert the symbols into CIF.

The following tutorial lists the allowed CLL statements {commands) and indi-
cates their usage. (See Appendix C for a summary of these comrnands.)

1. Header
The top portion of a .cll flle consists of statements which defin: the con-
stants to be used in the file or link other symbols to the flle. The allowed state-
ments are:
a. Comments

Comments are used to make the file more readable. The format is

/7* [comments] */

There is no restriction on the location of comments; however, comments cannot
be nested.
b. External Symbols
CLL allows the definition of external symbols. This is useful in
defining the symbols of the cell library or any .cif files generated by plagen. The

formal is

external name(ciff bounds Uz, Uy zlen ylan)

41

PRSP T D . NP AT U P D

.

ate ¥ W e ltm e e e ey ‘.F.-_'—'._‘i"_"._'v~‘.“';'-_'..'.".'._'._"_‘._'Z_'....'-_.“7_-_--._‘(.7'__ TR S

+ SR

2 g
< 3
3 :

This statement defines any reference to name as being a CIF symbol with j
o pumber, cif§. The smallest box which can be drawn around this symbol {(bound- .‘
“ ing box) has its lower left corner at (llz.Uy) on a lambda grid. The length in the

x direction is zlen and the length in the y direction is ylen. “}
” c. Defines

3 To define global constants which will be used in the body of the file,

é use the format

1 # define name value

* where # must be in column one of the file. Any reference to name causes

replacement by value. This value can also be an expression enclosed in

parenthesis. For example,

Dheirieit
LI Y)

define Irx (lix+xien)

"y

o gives the value of Uz+zlen every time lrz is stated.

2 d. Includes

&)

~ # include file-nams

includes the stated file along with the present file. This acts in the same manner
:' as "linking" two files together or actually combining both files into one.

\

: e. Conditionals

a)

s With complex designs, using many levels of hierarchy. there will be
f.; much linking of files together. This complexity can lead to coding errors due to
! statements involving undefined symbols. Additionally, because individual files
' may share the use of simple cells (e.g., drivers), there must be a way to prevent
% re-defining a cell within a linked file. The following formats can be used to
4

<

’ 42

L 4

a

)

)

LR W LTI T . UL R U RN A e . . . R R - .. . L. e e e e e
)h,,q ' q'. . .-.~!. Ly * '.'-_’,_ 1-"'.,_"._'-~ S e " o N T WL e IR S ".._‘._.’ ~~~~~~ R YA

eliminate these problems:

ifdef nams
statement
(included only if name
has been defined)
endif
or

ifndef name
statement
(included only if name
has not been defined)

endl

2. Symbal Definition
The symbol definition includes a symbol name (25 or fewer characters),

an optional CIF number, and an optional bounding box. The format is
name [(ciff bounds Uz Uy zlenylen)]

Normally, the CIF number and bounding box information are omitted since cll
computes this information. If a CIF number is specified, subsequently encoun-
tered symbols are given CIF numbers sequentially from that number.
3. Bady
The bulk of the .cll file is contained in the body. The opening brace ({)
indicates that CLL statements are to follow and the closing brace (}) indicates
that the flle is ended. Positioning of these braces and of the statements is not

critical to cll. However, indentation is recommended for ease of debugging. All

statements must end with a semi-colon (;).

.q! e Ne R T % Ve W e S "m Vet Mgy O e e e e T L are e PRI ML L A A AN i) i ._-,_,___.-, e e e
ﬁ*:
.*.::
%
<.)
- .
The following statements are allowed in the body:]
;;;. a. Comments I
Al 4
.- Comments can be used in the body to make the file more readable. :
: They follow the same format as described in the paragraph under Header.]
y.. b. Rectangles
= ¥
¢ The CLL statement for defining a rectangle is 3
S 1
rect Uz, Uy zienylen [layer); |
>3
3
o This statement produces a box whose lower left corner is at (lz,lly) on a lambda
-4
- grid and whose upper right corner is at (Uz+zlenly+ylen) The layer of the
ot rectangle is layer if it is specified. The default layer is the last layer defined in a)
~i '
NG layer statement. 1
R
o c. layers
. A default layer can be defined with the statement i
.' layer;
_2:, This statement is especially useful if the file is to have several rectangles on the
‘.cgJ
:'. same layer. This default layer is used any time that an optional layer is not
"‘ .
2_& specified and remains the default layer until changed with anocther layer state-

ment. Layer can be any one of :

diflusion,diff,green
poly.red
e metal,blue
contact,cut,black

implant,yellow .
glass]
metal2 ‘ X
poly?

. Y
2 -4
S by
-
3 o
;': d. Wires j
s Wires are used to connect distant points within a symbol. The basic .
; CLL statement is

wire [layer] z,y wirelist;

Again, layer is optional with omission implying use of the default layer. The
L starting point of the wire is indicated with z,y. Wirelist controls the path and

size of the wire and can be one or more of:

x,y move to (x.y)

layer change layer

u# up#lambdas

down # larmbdas

right # lambdas

left # lambdas

move to (given x.same y)
move to (same x,given y)
set width to # lambdas

R

<K~ Qo
e T Wy,

CLL requires a space between each entry of the list. A change in

~ T s TaTaT a8

- e

wire layer from metal to diffusion (or vice versa) or from metal to poly (or vice
versa) causes automatic generation of a "via". Changes in wire layer from poly
- to diffusion cause generation of a "butting contact” which is not recommended.

If the width is not specified, the default width for that layer will be used. The

4,3

A default width for any layer is the minimum allowed width for that layer.

" An example of a wire statement is

:

- wire 100,70 u 10 r 50 diff r 10;

.' This wire would start at (100,70) in the default layer, then it would move up 10
~ ‘ lambdas and right 50 lambdas before changing layers to diffusion and moving

right 10 lambdas.

%
]

e. Vias

A via is a connection between metal and diffusion or metal and poly.

This feature is useful in interconnecting input/output pads with their associated
circuit points and for running wires that must cross paths within the chip. The

.]
format is: ii

via Uz, Iy loyer;

The result is a 4 lambda square of metal, a 2 lambda square cut, and a 4 lambda
square of layer whose lower left corner will be at (Uz,Uy).
t. Calls
In order to invoke a defined symbol, a symbol call is used. It has the

form
nama (Uz, liy [transformations));

Since CLL always places the lower left corner of the symbol's bounding box at
(0.0), placement of the symbol requires a shift in location (and possibly a rota-
tion). The call first performs any transformations on name and then locates its
lower left corner at (llz,lly). All transformations leave the lower left corner of

the bounding box at (0,0). Allowed transformations are:

flip ud flip up-down

flip Ir flip left-right

flip rl flip right-left

rotate 0 rotate O degrees

rotate 3 rotate 90 degrees clockwise
rotate 8 rotate 180 degrees clockwise

rotate 9 rotate 270 degrees clockwise
rotate 12 rotate 360 degrees clockwise:

For example,

48

....................................

. A AT AT e " » T e Ll T S i I T I A S e R R T N e e L B i e L L B St

) 4,;\;.(.'("},.'_':' ‘ ;‘:.;a‘.'l‘

cell(100,500 flip Ir rotate 9);
X
'4 N flips cell left to right, rotates it 270 degrees clockwise, and then places the lower
:': left corner of the resulting bounding box at (100,500).
_ . g. Iteration
‘ When a symbol or cell must be repeated several times in a con- .
‘; sistent fashion (as with adding drivers to a PLA), the symbol can be iterated
using {
‘.2‘ iterate nz,ny [zpitch ypitch] symbol-nams Uiz, Uy [transformations]);

)
i

In this statement, nz indicates the number of times to replicate symbol-name in

T LR,

= the x direction and ny indicates the number of duplicates in the y direction. X s

Tl :

_’5: pitch and ypitch indicate the x and y spacing respectively. Either, or both, can .
be replaced with default to indicate that the bounding box dimension should be i

"3 used for the spacing. If neither pitch specifications are stated. the default will ;

o be the bounding box dimension in both directions. :

) h. Expressions

4

™ As in the ""C' programming language, numbers in CLL can be

5l

replaced by constant expressions. The allowed operators for these expressions

- are:

~

3

. - unary minus

X - subtraction

> + addition :

- . multiplication a

e, / division

X % modulo

"o

47

a.‘
5

‘.

I.'
-

»
P
e’

Bl

»
AS

\-:::
v
3 (
"{' In addition, there are 4 special operations:
l B d;Esymbol-nameg return width of a symbol
"% dy(symbol-name return height of a symbol
pwidth(expr) return width of metal |
s (where "expr” is in milli-Amps) |
-3 lexpr return cursor location plus "expr” |
'
"Q See Reference 5 for examples. ‘
3 : i. Print
o
For debugging a problem flle, the statement
5
AN
18> print(ezpr)
N,
can be used. This will cause the value of ezpr to print out on the terminal.
=
\: N B. CELL LIBRARY
2 Reference 7 provides a description of the basic library cells developed at
- Stanford University. These cells can be “'called"” using a symboal call if the follow-
oot
- ing statement is placed in the header of the .cli file.
q.'.:

. i"n

include " /visi/lib/local /s ext.cll”

- .
-8

s
' o
Bk A S

.l
A

‘s “a

The s_ezxt.clU file is a CLL file which "defines” the individual cells in the library.

2

(The actual CIF file for the library is stored in "/vlsi/lib/libs.cif.")

1%

ves
o C. USING CLL

':3‘ There are several methods by which the designer can prepare a geometric
‘ layout prior to ceding in CLL. This thesis will not discuss any of these; however,
\.ﬁ, it is imperative that the design be logically correct and that it consist of only
':‘: nMOS rectangular shapes assembled at right angles on a lambda grid.

It the design contains any PLA’s, the CIF files for these can be generatcd
:}1 directly using plagen or plague. These CIF files should be labeled in the form of

o

« T W NN a4 Fhaliir A A e s vl . S 3 a o It S iy RS St iy

................

Jile.cif. Since the plagen function does not produce input or output drivers for
the PLA, a CLL file (file.cll) has to be created for this addition. This CLL file must
“call” the PLA CIF file and then attach the drivers.

In order to use the CLL processor (cll), a .cld file must be created for all of the
symbols of the design and for the "main" program. Although it is possible to
include more than one symbol in a single .cll file, this is not recommended. For
simplicity and ease of construction, the designer should build separate files for
each symbol. The following paragraphs describe the procedures for creating
these files and producing the desired CIF files.

" 1. Making Files

The first step in using CLL is to create a .cll file for each symbol. This file
can be created using the vi editor and must be labeled in the form of file.cll.
The basic form of this flle is given in Appendix C, along with a summary of the
CLL commands.

If the design was originally drawn on a lambda grid, the CLL file can be
coded directly using CLL commands and the desired coordinates fron:l the lay-
out. The best approach is to place the major components of the symbol and
then add the interconnecting wires. When the file is complete, cll can be used
for plotting (for visual error checking) and for creation of the CIF files.

2. Plotting

Throughout the coding process, it is desirable to produce check plots so
that the designer can verify correct positioning of wires and transistors in a
symbol. This can be accomplished on the GIGI terminal or on the Versatec
plotter using cll. In either case, the best procedure is for the designer to gen-
erate a sorted cifout file (file.sco) before doiﬁg the plot. (It is possible to plot
directly without storing the sorted cifout data; however, duplicate plots are not

as easy to produce.) To generate the .sco file, use the command

.....

cll[options] file.cll file1.cif file2.cif ...
(,

‘ The options are listed in the manual page of Appendix B. The particular options

i for this operation are -, and -D. File.cll is the symbol flle and the .cif files are

any CIF files that were generated by the designer and "called” by the CLL file. If

f library cells were used, the s option must be used. The output is placed in

Jile.sco. ,
» The fastest way to get a visual plot of a .sco file is with a terminal plot. i
; "S The command 1
11
h cll -T [options] fila.sco t
\j generates a color plot of the sorted cifout file if a GIGI terminal is used. The

‘j b options of interest in this case are one or more of: -, -n, -x, -y, and -D (Appendix

B).

. The other way to get a plot produces a hard copy on the Versatec plotter.
J This approach uses much computer time and should be avoided during heavy Kk
| usage times. The command is .
é cll -P [options] file.sco
where the options can be one or more of: -b, g, -i, 1., X, -y, -s, -S, and -D {Appen-

g dix B). The stipple patterns are defined in Figure ! of Appendix B.
In general, a CIF flle must be created only for: (1)node extraction of sym- .
, bols; (2)the total design; or (3)fabrication of the design. In the first two cases,
j the command

.; cll -C [options] flle.clL file 1.cif file2.cif ...
v

"

creates a flle labeled file.cif which is the CIF file combining all "calls" and
"includes” of the file.cll file. The two options that can be used are -D and 4
(Appendix B). If library cells were used, the -1s option must be used.

To generate the final CIF file (which can be fabricated), use
cll -F [options] file.cll file1.cif file2.cif ...

The output is a CIF file labeled final.cif. The options are the same as listed

above.

D. EXAMPLE | AN
As a simple example of the use of cll, consider a gray-code-to-binary-code
converter with reset, using a PLA. If the inputs to the PLA are defined as reset,
gray. and z0 and the outputs are defined as binary and X0, then it can easily be
shown that the output equations are
binary = x0'&reset'&gray + xO&reset'&gray’
X0 = x0'&reset'&gray +~ xO&reset'&gray’
(' for complement, & for AND, + for OR)
Note that the combination of 0 and X0 is the feedback requirement for deter-
mining the "state” of the PLA and that the input gray code is serial with the
most significant bit (MSB) entered first. Since X0 and binary are identical, it
would have been feasible to use only one of them as both output and feedback:
however, since the PLA generator produces an "even' number of outputs, they
are both used.
In order to generate a PLA CIF file using the above equations, an input file
must be created for plague and the result‘mé output “pipelined” into plagen.
Figure 4.1 gives the input file pla.

To generate the PLA CIF file, the command

51

.....
........

''''''''''''''' . P R . . X
PRIV ol PN SIS R R
- e et s = m" s By -

T

d
1
5
4
]
K

)

plague < pla | plagen > pla.cif

is issued. The result is a CIF file, pla.cif and a schematic file, pla.schem. g

in: reset gray x0;

out: X0 binary;

binary = x0'&reset'&gray+x0&reset' &gray’; <
X0 = x0'&reset’ &gray+x0&reset’&gray';]

o
CIF# 901; :
;

Figure 4.1. PLAGUE INPUT FILE (PLA)

Additionally, the terminal responds with information about the PLA:

(3 input 2 output 2 term PLA);
(external pla (cif 901 bounds --15,0 100,31);

The first of these lines can be added to the pla.cif file for documentation pur-
poses. The second line can be used as an "external” statement in a .cll file.
Note that the bounding box of this PLA has its lower left corner at (-15,%) and the
upper right corner is at (85,31). Figure 4.2 is the pla.cif file with the added
documentation.

Since the PLA is computer generated and was not drawn on a lambda zrid, it
Is necessary to plot it so that the drivers and intercc ‘necting wires can be

added. However, the file must be modified with

C901TO,00;
E

at the end of the file. (CLL requires this modification.) A command of]

cll -1s pla.cif

S - . . . Ce e a

. . . NN
St e - P N o et et L T TNt P B .
A YA T U W VNS ST S RS R PV VT PTG I, Wt S P P L Y R

(ext 12);
§ext 13%:
ext 14);
(ext 15);
Eext 16;:
ext 17);
(ext 18);
Eext 21);
ext 22);
(ext 23);
gext 24;;
ext 25);

DS 901 250, 1;

(3 input 2 output 2 term PLA):
C14T-15186;

C12TO16;

C 13T 024,
CR23T-47
C23T-415;
C12Ti6 16
C13T 1624
CR4TR37
C23T1215
C12T 3216

C 13T 3224
CR23TR87
CR24T3915
C15T48 16

C 16T 4824,
C12RO-1T77:8
CR22T64a9,

C21 T84 20
C22T729
CR1T7R20:
C14RO-1T773L
C13RO-1T85 16
L NM

W4-13,16 -13,29 61,29
DF;

Figure 4.2. PLA.CIF

53

generates the pla.sco file. To plot this sorted file, use
cll -P 5.5 15 pla.sco

Figure 4.3 gives the result of this command.

From Figure 4.3 and the documentation of the input and output drivers in
Reference 7, a CLL file can be created to form the converter symbol. Figure 4.4
is a possible solution for this CLL file (converter.cll). A sorted cifout file can now
be created. However, first the pla.cif file must be modified by remova! of the

two lines that were added previously. Then a command of
cll -1s converter.cll pla.cit

will generate the flle converter.sco. This file can be plotted on the GIGI terminal

for a quick check using
cll -T converter.sco
or on the plotter with
cll -P -i15 ¢5.5 converter.sco

{Note that the resolution of the terminal may not be suflicien'. for the designer
to detect errors with the whole converter plotted To get better resolution on a
specific area he should window the area using the -x and -y options.) Figure 4.5
gives the re:ult of the Versctec plot.

Once the symbol has been visually inspected and all errors have been

corrected, a CIF file can be created with

cll -C 1s converter.cll pla.cif

2 -
.. -
v, J
3 o
.-, VJ
5 .,

SCO

o
i
{
0.0

55

Al gietyl
i
|
.
|
|
!

i
|
0.

Il
. |
=y
T

!

,

—

]

i
0

0
Figure 4.3. PLOT OF PLA.
2

AL AN

¥ il v
: . 2D rhl] et
A H .) : et
b, i v g vt / Lr. m !
: = T
: 3 - L h
.. el T T e
; 00 AT e 1T 00
: =t I | f.27g
LA ! ~ olrﬂ
w. . 4 _lav ua
r.
K
B
'
{
A-
'] ”

P ALY
MM

/* include external definitions for library cells */
include "/visi/lib/local/s_ext.cll”
/* define external reference to pla */
external pla(cif 901 bounds --15,0 100,31)
gray_to_binary()
i /*place pla®/

pla(0,0);

/*attach input and output drivers*/

iterate 3,1 PlaClockIn(15,-58);
PlaClockOut(76,--53),

/*connect gnd, vdd, and clock lines*/
wire metal 2,1 w4 d 23 r 14,

wire metal 73,1 w4d 16 r 4,
wire metal 62--22w 4r68d21r9;

wire diff 57,--58 w 2 d 2 metal r 22 u 5 poly u 2

wire diff 25,--58w 2 d 2;
wire diff 41,--58w 2 d 2,
wire poly B7,--53 w2 d 2;

Figure 4.4. CONVERTER.C".L

R T AR har Pp—— —
5 [
.
|
'P — —
m., .
3 .,
b, ,
g pe s ..
Y, : ;
3 L .h
y. , wos neu W K o 1] B ; .
. v |} s ’
S N izt] - 3]] : o K
a o A
. 1 .
_m.. Gl e ¥ o o ’ “ _0. *
. L P (@)
[, 11 e O
ﬁ.. a3 13 . n
. wm y 1 - m.
A H o £
e ¢ - [»
g L1 W 7 >
. ﬂ . k] [0
| e T - W (&)
. 5 [™~
. o @
. B T =
b’ v (-] 01
Hi i : =
_... e - e @ .
- ? 4 y -) :
_ 3 - 1l . o]
. fa = ~ _ o 4
g u 1) 3 @
: ! 2 s N ae ‘ Y
L s ot ol 4 b m
41 4 B Wi o .
. ; " 70 B R
r,.) mx 7 | °
{ K & e
A 23k
v. \ .m
. $3 2
481 n
b] —— 3 o
u mss .
-1 - .
e 7278 AR ¥ R i B 49 98 oK D ow r
275/ KRR L — s % N\\\. . 3.0 o .
' -1 o] " - P
e Jpom g
. O 2 0O
; L~ AL Ybe

S A A A S A PR SRR A AR I A i SR A P e\ gt Rcirie TR a3 G AR R D bl b Ut e SRk e A el S el g A g I

V. DESIGN VALIDATION

'* Throughout the design process, the designer will wish to improve the
: confidence in his design using various CAD tools. These tools have been designed
to overcome the most common weakness in creating a VLSI chip - human error.

Although the perfect designer will have no need to validate a design against pos-

sible errors, most of us want to ensure that our finished product performs its

desired function.

z
; Use of the validation tools has no definite prescription. Each designer will 4
;:: have to decide as to what stage of the design process (what level of symbols) h
should be validated at a particular time. However, to keep the validation and ‘
debugging times to a minimum, we recommend that each "major" symbol be]
; validated separately. The actual tools that can be used are the Design Rule 1
Checker, the Static Checker, and the Event Simulator. i
: :
" A. DESIGN RULE CHECKER :
The Design Rule Checker inspects the sorted cifout file for design rule viola-
" tions. In order to use the DRC processor (dre), the symbol must have a sorted
3 cifout file (file.sco). The generation of this file is described in Chapter 4 of this
, y thesis. A command of
‘ dre file.sco
< initiates the design rule check of the stated file. (See the manual page for DRC in
j Appendix B for details.) As with all of the validation tools, the DRC is time con-
g suming and should be planned for times of low computer usage. The outputs of

the DRC are file.drc and file.co.

58

XK
e

-
% i
e
1. Evaluation Of Outputs
{
" File.dre provides a list of the lambda coordinates for any errors detected
N
0

by the DRC processor. Each error is classified by type. however, one error may

cause several coordinates to be listed. A comparison of the error coordinates

i: with a plot of the symbol layout provides the designer with the source of the
,. problem(s).

"«.:: If the designer wishes to plot the output of the DRC combined with the
7 actual layout, the command

o\

’ cll -P [options] file.sco fila.co

|3+,
'l.'

. LA

can be used. The result v:ill be a plot of the symbol with "black” areas indicating

Pt
1Ay
:;. the areas of design errors. Additionally, a terminal plot can be made using
cll -T [options] file.sco file.co

=
'- with "white"” areas indicating the areas of design errors.

2. Example

;. As an example of the use of the DRC, consider the CLL file wrong.cll (Fig-
Y ;.."~)

3,‘:' ure 5.1). This is the same as converter.cll {(Figure 4.4) with the exception that
-;Q;n

' the starting coordinate for PlaClockin has been changed to (16.--58) vice {15,

N 58). This one lambda shift of the input drivers gives design errors for evaluation.
N
:::} The first step in the validation process requires the generation of a sorted
R e
cifout file. The command
7

oy cll -is wrong.cll pla.cif

x)
Y
bt will give the file wrong.sco. Now, to use the DRC, a command of

Y

\

s 59
wCS

f.'

g,

el

Ll ittt i ClC R ot PR ARG G YRS RS RA S SRR G S A R A A A R

drec wrong.sco

is issued. (Prepare to wait, the DRC is extensive and slow.) Figure 5.2 gives the

output file wrong.drc with a list of the design errors.

/°* include external definitions for library cells */
include " /visi/lib/local/s.ext.cll”
/* define external reference to pla */
external pla(cif 901 bounds --15,0 100,31)
%ray_to_binary()

/*place pla*/

pla(0.0);

/*attach input and output drivers*/

iterate 3,1 PlaClockin(18,~58); b
PlaClockOut{76,--53);

/*connect gnd, vdd, and clock lines*/

wire metal 2,1 w4d 23 r 14;

wire metal 73,1 wd4 d 168 r 4,

wire metal 82,-22w4r6d21r9

wire diff 57,--58 w 2 d 2 metal r 22 u 5 poly u 2;
wire diff 25,-58 w2 d 2,

wire diff 41,--58 w2 d 2;

wire poly 87,--53 w2 d 2;

Figure 5.1. WRONG.CLL

it ndmatntimen,

A merge of the sorted cifout flle with the file wrong.co can be produced

with the command

cll wrong.sco wrong.co

The output is stored in merge.sco and can be plotted on the Versatec or the

PP SPIPP RPN WY Y

60

e T e e e T T T e e T e e ST, B .
R N T T T T T N
L TR VL VR R TR TSR LS e TR R AL AR S S SR Yt e TSRS SRR ARSI |

................

Lo TN AR 2 & 0 4 w0 it S 2 SR SULIYL I B EPY i i g e S o o o ™~ ™ W W W W ———— gy —r—— - -
B N A A LI I T - e . - aciiad -y‘h,“ﬁv"—‘w"r‘v:‘-—-—v:—‘v.";"

-
-

Poly min width errors:
18, 60

16, 60

1?7, 63

18, 82

24, 60

24, 60

25, 63

26, 82 :
32, 60 K
32, 60 !
33, 63

34, 62 b
40, 80 3
40, 60 N
41, 83 -
42, 82

48, 60

48, 60

49, 83

50, 82

56, 60

58, 60

57, 63

58, 62

Diff min width errors:
24, 4

25, 2

25,3

24, 5

28,2

28, 2

28,3

26.5

40, 4

41,2

41,3

40, 5

42,2

42, 2

42, 3

42,5

Metal min width errors: ﬁ

~'ataa . mama . 2

Lok

ah usad Aok ad

Contact metal cover missing:
Contact poly or diff cover missing:
Poly to diff-contact separation error: .
There are 35 transistors Y
Poly separation errors:
Diff separation errors:
Metal separation errors:

(continued on next page)

N
Poly to Diff separation errors:
. 18, 62 b
; 19, 61 N
-\; 23. 62 R
8 24, 81 p
D 34, 62 -
3 35, 61 -
: 39, 62 -
40, 61 N
& 50, 82 -
¥ 51, 61 4
4 55, 62 g
R 56, 61 g
v Implant surround error: -]
Poly-Diff-transistor surround errors:
286, 3
s 42, 3
l
» Figure 5.2. WRONG.DRC
o
- terminal. Or, a plot can be obtained directly with the command
g
)
< cll -P g5.5 -i15 wrong.sco wrong.co
f".'j Figure 5.3 is the result of issuing this command and can be used to evaluate the
Al
~ errors detected by dre. The error points are indicated by "dark” blocl:s.
)
i From Figures 5.2 and 5.3, the following errors can be seen:
~‘ Poly min width and Poly to Diff separation errors
o in the areas of:
> 17,60
N 25,62
- 33.62
41,82
.1 49,62 :
N 57,62 .
g Diff min width & Poly-Diff transistor surround ,
! errors in the areas of:
i 25,3 -
41,3 _ »
1 A closer look at the plot indicates that all errors are caused by the shift in
} placement of the input drivers and can be easily corrected by changing the “cal-
) ling” coordinate of the input driver. s
‘f
&
.\]
i 82
-

[}

R T R S S R B S S el

<
e

FTFTETTTN
1

—.3

{0
|

1 Po ”
L
) R0
Z
£
;

T Nt n e & e et

10
i
1
|

‘ -.r- o u- - - &3
Wll i ;.Thu W 73 L E l = _ o
4 g I

X
by

100.0
160.0

E al
i%’“

i £ 4
T BN
-1
CRORAEES 520
rXy
=
SNy

bty iog”

8 wed T 4

r % -

. o 2 5 [
T y m au. Aﬂ.] ...“
’ Jrid, i B At Fil oo
L “ |« {- o i & - . &Am

A E1|mil = T

-

& |
J

Figure 5.3 PLOT OF WRONG.SCO AND WRONG.CO
63

o 9
b ~ [B2 O DO
3 " hITL Y 13 BIPERS .
. cg : “.nh. 2B m‘u h& K o
. " Bas . .
.- o RN “E: 4
e ok 2 000
. - o M . -
3 ~] nmQO
1 b -
o " .M k o [~
3 b . i L
; - .34 z: [}
Wn Y : 3.
2 S
. T : —1
3 b H o i
d

. oz N L]

VA GECN

ds ~3.0

- N
|
!
l
i

)
————

CIT bounds
grid 3 &
scale 13

sbouu
XCIT bounds

:
3
!
o
|

-5 o € 1 $ 10 Lf o 3If YO «Fr So 5 &0 &Y 10 1f 2

......

..

" As an alternate method for determining the source of DRC errors, a ter-
{
S minal plot of the "window" around an error coordinate can be used. For '
-1 ‘ example,
) cll -T x0.25 -y50.70 merge.sco

_,, indicates one of the problem areas. ..*
S8

‘ B. CIRCUIT EXTRACTOR i
The Circuit Extractor extracts a circuit from a CIF file so that it can be simu- b
* lated. The manual page for the Circuit Extractor (EXTRACT in Appendix B) gives
the commands necessary to perform an extraction. If it is desired to extract a
-
‘ symbol for which there is a CIF file labeled file.cif, then the proper command is
¥
\‘
<!

extract fila

The result of issuing this command will be generation of file.def, file cap,

..
ettt

file.gate, file.node, file.rec, and file.sym.
1. Plotting

A plot of the node numbers which have been assigned to the symbol can

be obtained with the command

node-plot file

This produces a Versatec plot of the layout with stipple patterns as defined by

VSRAALAET AT

#,

Figure 2 of Appendix B and node numbers at various points throughout the plot.

-
L
..'
1"
"
64
Ll
.
f

¢ yq""‘ﬂ)

.Y

...

e

0
o.‘_
,-:',
L.
o
)
i
Qg
-
~,
<

- .

.................

2. Defining Nodes

In order to.evaluate a circuit under simulation, it is necessary to assign
names (labels) to selected nodes in the circuit. As a minimum, the power bus
(vdd) and the ground bus (gnd) must be identified. To do this, the file.sym file
has to be modified. (It is empty.) Referring to the node-plot output, the designer
can use vi to modify the file.sym file by making a list of node numbers with their
associated names. For example, the most commonly labeled nodes are power,
ground, inputs, outputs, and clocks. Once a node has been given a name, it can

no longer be referred to by number.

3. Creating A Simulation Fi

A simulation file {.sim) is required by both the Static Checker and the
Event Simulator. If an extraction has been performed on a symbol file.cif and
the file.sym file has been modified, then the function sim can be used to

generate the simulation file. It is invoked with
sim file

The output is file.sim and can be used for static checking and simulation.

4. Example

The example of Chapter 4 can be extracted by issuing the command

extract converter

The extracted circuit can now be plotted with the command

node-plot converter

The terminal responds with

PP WP g

LMt T T P AT, R I A b S A A SCR g Sdh B A S a i e S B e B 8 o o L NE e '—'1
R st PR LI S P TNt Bl s - B R B B -
- e . S S et - PR

type-—stipout /vlsi/tmp/converter.stip[A-A]--when ready |

This statement indicates that the sorted data for the plot fits into a 240 lambda

strip (A) and can be plotted with

stipout /visi/tmp/converter.stipA

Figure 5.4 is the result of issuing this command.
Using the node numbers as shown in Figure 5.4, a .sym file can be created
to label the power, ground, input, output, and clock nodes. Figure 5.5 gives this

converter.sym file.
The simulation flle can now be created with

gim converter

AN S

>
<
-

rrvvrr
v

LIy

P e

T

.

y
B e

<

1 CA AR
E"- Y

-

LA f
- ".

4

e T
Sl

1

- . . .« T R L. - N . . = - St et .
YA Lo s Ot W e Lt e o NN ~ T Y ot)
— JEE TESUE W W ““A.JJ—.A.A‘A'>A‘L‘\A1-<‘_.Y-\—\“.'-‘-\,--n_-,- ..\- e L

3

T
0%

A
I

o

s :
' i TR . n _‘I::": _*‘—'u-—-‘gt{——;-

-+ g e [

3
4
7
&
7
7
7
7
7
z
v
V) }
J

l it se).-’ — i
‘ i o |y s s
fml S,

3 I
= | l o
" il !
N | |
. o il !
I |
| |
! i
i i
Figure 5.4. PLOT OF CONVERTER.STIPA
87
R I TR " AL;_-_*.‘ T

13 gnd

3 vdd
105 phil
42 phi2
108 reset
109 gray
7R binary

Figure 5.5. CONVERTER.SYM

C. STATIC CHECKER

The command
stat file.sim

initiates a static {dc) analysis of the symbol filz. Stat accomplishes this by using
a data base consisting of a set of transistors, each with a gate, source, drain,
length, width, and type (currently enhancement, depletion, and intrinsic), and a
set of nodes. The program tries to determine the threshold drops on the nodes
and the use of the transistors by adding to this data base. Finally, having under-
stood as much of the circuit as possible, the program makes a pass over the
transistors that are still not understood and indicates any that are obviously
incorrect.

As stated in the manual page {STAT in Appendix B). the two outputs of stat are
standard output containing an entry for each potential error and standard error
output containing the number of nodes, inverters, etc.

1. Exaluatiop Of Qutputs
The manual page for stat (Appendix B) gives a list and expianation of the
outputs. However, a few comments are nec.essary to prevent an incorrect
analysis. Prior to beginning a static check, it is necessary to identify the power

(vdd) and ground (gnd) nodes of the circuit. The Static Checker identifies input

...........

]

-

LRSS S it S St s g St Bede Siubt Jhn Tt Jhai T gt b ot e gruay B S Aren o ek e aes o S0 RIS LAl Y -y b T Y
A PR R T AP : LT et ot : -

nodes by locating any enhancement transistors whose gate is ground, source is
the node, drain is ground, length is 2 lambda, and width is greater than 39
lambda. If no input nodes are found, the "Propagate” output will not be valid.
Some of the errors are repeated in both the outputs. For example, a chip con-
taining 5 ratio errors (all with a ratio of 3.45) would have one line in the standard
error oulput, indicating that the ratio 3.45 occurred 5 times, and 5 entries in
the standard output, one for each ratio error, detailing the specific nodes and

transistors involved.

2. Example

Continuing with the converter example of Chapter 4, a command of
stat converter.sim > converter.stat

initiates the static analysis and stores the standard output in converter stat.

Figure 5.6 is this file.

Evaluation of Figure 5.8 results in the following:

1) The unknown threshold drops are the input, clock, and
output nodes. This is expected since there are no input
or output pads.

) The ratio messages indicating a pu/pd ratio of 0.00 are
associated with the input and output nodes and are also
expected due to the fact that no pads are present.

3) Since no pads are present, the Static Checker did not
identify any input or output nodes, so that all other nodes
are not affected by the input nor do they affect the output.
(Indicated by the Propagate print out.)

4) The only nodes not affected by either ground or power
are the input, clock and output nodes. This is desirable.

5) There is no indication of transistor (or other) errors, so
we assume that the circuit is statically correct.

69

O L T S U
DY . - . . N
e e

w . S A B T T T)
MR PR W A VRN NN R PR TSR A R YRR T S
Al e A et o il o o o Nl L Ya A Nl y .' .
A A la el ot PO S S-S R I T *

SO 2138 bytes of 'free’ storage used
2 Unknown threshold drop on node: 44 (80,58)
: Unknown threshold drop on node: 45 (88,58)

Unknown threshold drop on node: 86 g24.32;
: Unknown threshold drop on node: 88 (40,32
Unknown threshold drop on node: 90 (56,32)
Unknown threshold drop on node: phil (15,8)
Unknown threshold drop on node: phi2 (76,60)
0.00 18 (50,36) <2x2>: <90?2x16> gnd
0.00 31 34.363 <2x2>: <B88?2x16> gnd
0.00 51 (18,38) <2x2>: <B6?2x18> gnd
0.00 64 (B83,28) <4x2>: <44?2x8> gnd
N 0.00 binary (84,16) <4x2>: <4572x8> gnd
Propagate (10): 2 (78,85)
o Propagate (10): 5 (86,85)
N Propagate (10): 9 (7.77)
i Propagate (10): 12 (18,85)

i
LSS Y WP I S B N N PP DOUSLY 3 TP IS

Propagate { 10): 15 (32,85)
XP Propagateé 10;: 18 556.85)
. Propagate (10): 27 (7,69)
o Propagate (0110): gray (40,4)
- Propagat.e§ 102: 31 (40,85)
¥ Propagate (10): 34 (48,85)
Propagate (10): 44 (80,58)
Propagate E 10;: 45 (88.58§
Propagate (10): 51 (24,85
Propagate { 10): 64 (79,46)
Propagate gouog: 86 §24.32;
Propagate (0110): 88 (40,32
Propagate { 10): 90 (58,32)
Propagate E 10): binary (88,40)
Propagate (0110): reset (24,4)
Propagate (0110): phil (15,6)
Propagate (0110): phi2 {76,60)

Figure 5.8. CONVERTER.STAT

D. EVENT SIMULATOR

The Event Driven Switch Level Simulator (esim) can be invoked with

esim file.sim

Once invoked, esim performs as an interactive simulator with a prompt of

N sim>

- - ~ . - .

iy
£ \.“ e

z
=
oy

AR5

Sy Y Y
n';;;‘fn

F .'c 2 oy

-

Yy . . . L
SRV

The manual page (ESIM in Appendix B) gives the allowed commands for complet-
ing a simulation.
1. llsing Esim

Although it is possible to complete an entire simulation in the interactive
mode, the designer will find that the most eflective procedure is to plan a
desired test sequence {a set of inputs and clock cycles to generate a known set
of outputs) and use vi to create a "macro” file to be read by esim. This macro
file should contain the initiating commands (as described in the manual page)
for the input nodes and the desired clock sequences. Additionally, it should

identify the nodes to be “watched.” The file can be initiated either with

© file.macro
after esim has been invoked or can be included at the start of the simulation
with

esim file.sim file. macro

Two-phase clocks can be defined with the Kcommand. For example,

K phi1 110000 phi2 000110

defines one cycle of a two-phase, non-overlapping clock. The input nodes can be
set to a "high” or "low" state using the h and 1 commands respectively or with
the Vcommand. The outputs can be “watched” with the wor W commands.
2. Example
To simulate the converter example, the macro file esim.macro must first

be generated. (See Figure 5.7.) The command

N

%5 RO
LGRS R b

ey

l"l‘.c‘
) A
= L W Iy Ry WY 5

02, Yty
S,

Y

AL

esim -esim.out converter.sim esim.macro

invokes the desired simulation and stores the output in esim.out (Figure 5.8).

w gray binary
K phil 110000 phi2 000110
h reset

% reset 00001 gray 1110
5 reset 00001 gray 1001
5 reset 000001 gray 11100
\Rf’ reset 000001 gray 01011

R
V reset 000001 gray 11111
R
9

Figure 5.7. ESIM.MACRO

23 transistors, 23 nodes (12 pulled up)
binary=0 gray=X

cycle took 32 events

>11101:gray

>01011:binary

>10011:gray

>01110:binary

>111001:gray

>010111:binary

>010110:gray

>001101:binary

>1iilll:gray

>010101:binary

23 transistors, 23 nodes (12 pulled up)

Figure 5.8. ESIM.OUT

Evaluating Figure 5.8, we see that the last (right) bit given for gray and

the first (left) bit given for binary are invalid and are only typed because of the

nature of the R command. There are five input gray codes used for the

p 5 *‘."‘,

D S

Ay

24

A

t‘. J‘l".l.'.' Pl

SAOASKR IA

, &5 % %
2o W

)
Pl

b

he ¥

o

a

simulation with the respective equivalent binary code outputs. The MSB is to the

left of the printout. Comparison of each output with its input reveals that the
converter works as designed. For example, an input gray code of 1110 should

(and does) produce a binary output of 1011.

The last step in the design process is the combining of all valid symbols to
form the total chip. The CIF file for the chip is formed with the cll -F command
to generate final.cif as described in Chapter 4. This file should be validated with
drc, stat, and esim. Once the total chip has completed all of the validation tests
to the satisfaction of the designer, it can be manufactured with a good chance of
success. Appendix D gives the procedures for DARPA supported chip

manufacture.

......
....................................

y
K
K
\
"

At d i i

P~ A VRPLI N

RN

YA

N

)
e
o’

-

G Bdad

&
]
5
3
i

V1. PRQIECT: 16 BIT VERY FAST PIPELINED CARRY 100K AHFEAD ADDER

A INTRODUCTION

This chapter discusses the development of an LSI design from conception
through simulation. The creation of a sixteen-bit adder is a two part research
project. First, the CAD tools and hardware resources available at the Naval Post-
graduate School needed to be exercised and documented. Secondly, recent
interest in the design of recursive (IIR) digital filters indicates a need for fast
adders that possess a predictable amount of delay. The adder designed and
fabricated in this thesis project has both of these attributes. Moderate
complexity.testability, and the possible utilization in a larger complex system

entered into the decision to create the 18 BIT'ADDER.

B. LOGIC DESIGN

1. Pipelining
Nearly any digital circuit which accepts incoming data, processes the
information and produces an output may be suited to pipelining techniques. As
the title suggests,”pipelining” is incorporated into the design. Pipelining is a
technique whereby a larger more complex functional unit is serially decomposed
into several smaller less complex functional units. Fach sub-functional unit
accepts a digital input, performs a "sub-process” and outputs the "sub- resuit”
to the following stage. The output of the final unit is the overall result. The term
"pipeline” suggests data entering a pipe at one end and the result spilling out at
the other end with processing taking place between the input and output. This
type of visualization omits a very important parameter - timing. A better way to
comprehend the pipeline operation is to visualize an assemblyline. The produc-

tion of a automobile is a good example. Inputs are all the necessary components

74

Dl G et S A i e AL A A Ay il Al AR ARA SIS A A DS o A A AL Al ot i - o o e g Ty
e BRI RSN A T

and the output is the finished automobile. Along the assemblyline, certain func-
tions are performed at each work station and a finite amount of time is required
for each function to be completed. The system clock provides the control sig-
nals to the assemblyline, At each tick of the clock, the yet unfinished auto moves
one additional station towards final completion. The fastest speed at which the
assemblyline may progress is determined by the work station that requires the
longest period of time to complete its task. If the line advances before a station
completes its function, the output product is rendered unuseable.

The basic advantage of pipelining is increased speed of operation. Two
disadvantages are complexity (additional hardware) and "fill" time. Continuing

with the above example, fill time (delay) is the amount of time it takes for the

first car to reach completion. The fill time is as large as. or larger than, the
amount of time that is reduired by one group of workers to complete the entire
automobile. Increased speed of operation is realized when the assemblyline is
broken down into numerous easy tasks. This is the key point in pipelining. While
it may take many ticks of the clock to obtain the first car, an additional auto is

completed for every subsequent tick of the clock. And, the period of the clock is

I intinteinibni O B

the time required to complete the short easy tasks. The complexity of such a

P

line is obvious when compared to the “one group-all tasks” approach.

[VR

When referring to a digital circuit, the increased complexity arises from

the necessity to store intermediate results between sub-units until the next

LI SR

clock signal is received. Normally, the additional number of storage devices is

great and can quickly become as complex as the functional logic. The fill time is

ettt il

f:*:j usually considered to be a disadvantage. However, this project originated as a
73 -

.\ N .

;.:j sub-functional unit of an infinite impulse response digital filter. A precise
U

, o

amount of delay is required for this type of circuit. In this case, the fill time is ?

considered to be an advantage. The highest clock rate can be realized when

= 75 ‘

EN A

Puf e A Siun Jhae e bt et Aubt S Jiain Site aie St Ji |

there is only one gate delay per sub-unit. This maximum clock frequency
depends upon the amount of time needed for the data to progress from the
input storage device through a single level of functional gating and then stabilize
the output storage device.

Carry-look-ahead addition, which is discussed in the next section,readily
lends itself to pipelining techniques. The adder is divided into "N" sub-functional
stages . Two sixteen-bit vectors are applied to the inputs. "N" clock cycles later
the sum of the two vectors is obtained. If two new vectors are applied to the
input of the pipe at each clock pulse.then after the initial fill time of "N" clock
cycles, a resultant sum is output for each subsequent cycle. Many pipelined cir-
cuits use a two-phase non-overlapping clock. This allows for data to be clocked
into a sub-functional stage on one phase and the result to be clocked out of that
stage on the other phase. The limiting high clock rate is determined by the sub-
unit with the largest delay. The limiting low clock rate is determined by the
length of time the charge stored on any input/output dynamic register remains
above threshold. Recall from chapter two that this charge decreases exponen-
tially and is on the order of milliseconds.It is possible to utilize flip-flops as the
input/output register to alleviate concern for the limiting low clock rate, how-
ever, this adds to the overall complexity of the design.

2. Carry-look-Aheacl Addition

The standard one-bit full adder utilizes three inputs and produces two
outputs. It accepts the two binary bits to be added, denoted as A; and B;, and a
carry input (;_; from the previous stage. The outputs are the sum bit S; and
the carry output (. One set of boolean expressions that realizes a one-bit
adder is shown in equations (8.1 and 8.2). An n-bit full adder is constructed by
connecting (n) one-bit stages in parallel. Clearly. the amount of time for an n-bit

full adder to produce the output depends on (n). For the worst case analysis,

76

.............. ERSE .. . e St et . .ot
o P A L S, N U T T A - W AP S S TP _._.,.-.~.\.i

S;=(4;) XOR (B;) XOR (C;_y) (6.1)
XOR implies the eXclusive-OR logical operation.
G=AB; G+ ABCio + AB; G+ A5G, (8.2)

input vectors 4 and B could be such that if a carry were generated by the least
significant bits (Ag and Bg).the carry would "ripple” through the remaining
stages. The output would not be valid until this carry propagated through and
affected all of the stages. As the size of the adder gets larger, this "ripple” effect
induces a larger time delay. In order to increase the operating speed of n-bit
adders whose length exceeds four bits, [REF.9:pgB8] a technique known as
carry-look-ahead addition is incorporated. Additional circuitry is added to pro-
duce two functions called "carry generate” and “carry propagate”. The carry
generate function {(G;) is true when a carry is generated in the ith stage
regardless of the value of the carry into the ith stage. The carry propagate
function (P;) is true when the ith stage would propagate {pass) an incoming
carry to the next most significant stage. The logic equations for the two func-

tions are defined as:

Gi=A,;Bi (6 .3)
P,=(4A;) XOR (B;) = A,B; + A, B; (6.4)

When equation (8.4) is substituted into equation (6.1) the following is obtained:
S;=((4;) XOR (B;)) XOR (C,_,) = (P;) XOR (C;_,) (6.5)

Equation (8.2) can be simplified to:

LRSI

- . -t
A oA oy B s = 0w

et nd AN

|

I .
¥
‘_\
.-T'
k..
&,
. G=AB; + (G_,) ((4) XOR (B;)) (6.62)
{ Substituting equation(8.3) and equation(8.4)into equation (6.6a), C; becomes:
:;z G=G + P,C,_, (6.6b)
N
i o

Note that all P; and G can be simultaneously determined from the input vec-
:_‘ tors 4 and B. And,equation(6.5)implies that S,- can be produced in parallel pro-
AL
" vided all the carry inputs can be obtained simultaneously. This can be accom-
" plished by solving equation(8.8b). Equation (8.6b) is a recursive equation and
.r' with the carry input to the first stage being defined as C'_;, a set of carry equa-
.:" tions for all Q can be developed. The general solution is:
2 G=G + G- \P, + G2Pi\\Pi + ...GoP\Py - - - P, + C_\PeP,P2- - - P, (8.7)
S .
o To illustrate this formula,let 2 =4. Then, C4 the carcy bit needed to realize S5
_., has the following logic equation:
- C4=Gy + GaP4 + GoP3Py +GP2P3Py + P P3P3Py + C_\PoP1P2P3P, (6.8)
\, S is obtained by combining P5 and C, in an XOR gate. Equation (6.7) is one
T method of realizing a carry-look-ahead (CLA) "unit” An n-bit adder requires
. equation(6.7) to be expanded to (i=m.—1). Two other units are necessary to
‘-§ produce a carry-look-ahead "adder”. The carry generate/propagate unit pro-
X :
X! duces the G;’s and F;'s from the input vectors 4 and B. Both the G;'s and Fy's
VI
- are then delivered to the input of the (CLA) unit which forms the carry bits.
L,
) These carry bits are combined with the F;'s in a third unit called the
-

i, 78

v ety e NS s e e

summation unit to produce the Si's. This type of carry-look-ahead adder {even
though it has three main units) is called a one- level CLA adder. The distingush-
ing difference between a one-level CLA adder and a two-level CLA adder is the
number of CLA units located between the carry generate/propagate unit and
summation unit.

When (n)-the number of bits to be added-grows large, the problem of
fanout becomes critical. Note that in equation(6.8) for 1 =4,P, appears in five
product terms. For a sixteen-bit adder, the most significant bit is 2=15. To pro-
duce S;5. P5and C, are required at the input of an XOR gate. It is seen from
e@tﬁon(ﬁ.?) that P4 would occur in fifteen product terms to develop C'y4. This
implies that the P 14 output of the carry gen/prop unit experiences a fanout of
fifteen upon entering the CLA unit. A fanout of fifteen causes current limitations
to. be approached or exceeded in some large scale integration
technologies [REF.9:pg.88), To circumvent this problem, a two-level carry- look-
ahead adder is utilized. An additional CLA unit is inserted between the gcen/prop
unit and the summation unit. The addition of this extra CLA logic alleviates the
fanout problem but introduces extra gate delays and increases the overall com-
plexity of the adder. Modifications are made to this additional CLA unit to
develop what is called a "block" carry-look-ahead unit or (BCLA). The BCLA unit
is very similar to the CLA described by equation{B.7). "Block" denctes a definite
bit length. Normally, (n) is equal to four or eight. Instead of producing (for

n =4) four carry bits,the BCLA unit develops the three least significant carry

bits along with two other signals denoted as "block carry propagate” and "block

.j,' carry generate”. An example delineates the differences between the two types. A
;:;{': standard four-bit CLA unit produces C; +3. (42, G40, G 1=0,4,8,12, ... while
g a four-bit BCLA unit develops BP;,BG;,Ci42.Ci41. G 1 jJ=0,1,2,...i=4j BF
I\ and BG signify block carry propagate and block carry generate The 5P, bit 1s

valid if a carry into the block results in a carry out of the block. For n=4, BF;

is determined by the following:
BP;=P,;,3P; 2P P; 1 j=0,1,2,3,... [i=4] (6.9)

The BG; variable is true if the carry out of a block was produced within that

block. BGj can be written as:

BGj=Giu3 + Giu2Pisa + Gi1PiraPiva + GFis1FivePieg (6810)
§=0,1.2.3,... ; i=4j

Using equation(8.6b) and the recursive solution method,the block carry bits can

be formed from the following equations.

~—”

BCy=BG, + C_,BP, (6.7
BC,=BG, + BG,BP, + C_BP,BP,
BCy =BGz + BG\BP, + BGyBP\BP; + C.\BP(BP B8P
BC5=BGy + BG,BP; - BG,BP,BP3 + BGyBP\BP;BP3 ~ C_\BPBP ,1P,BP;

Note that equation(6.11) is a recursive formula on a block level where
equation(8.6b)is a recursive formula on a stage level. For a sixteen-bit

adder,BC5 is the carry out or overflow bit.

A sixteen-bit two-level carry-look-ahead adder constructed from commer-
cially available four-bit CLA/BCLA units is shown in Figure (6.1). Inspection of
Figure 6.1 and the equations presented in this section yield the following gate

delay analysis. The propagate /generate unit requires three levels cf guting due

D R MR R
n, PRSI

e e e e e e e e T e L e . . 5 - e e L .
(AN Y SRR O S W O WA . Y Y R P L Y. N WA WL S WAl U S ST A VY. W W, VA S-SR L AP PSP N PP T

T e—

PNl St e Mt e

Fha T i AL el S Bt =4

i
..

v

ETWE AW N NN
Tt e -t

o&.& 0 o o 0 o 0 v_mmm_mwv

LIND NOLLVININNS

.
.......

: |
vid
I.liﬁfoo; hod ¥ hhooe
T S& nog[) a n_om:wﬂo
LINO V1O
094 pod w » N_wi
) 1! . €96
oo¢ _o_?o» 3¢ 8»8» mo»ao%_o N_osvna 10#
v108 v 108 v108{d v 1084
> > 198 298] lp>
-3 —~— Gda A 138 e 28 Lt caa
. o|nmu O..mn_ VIhmv ?:h& w::@ mx:& N_IQU N_Im_&

8»_%8» 0oo0o0 og%&»&» 0000 oma»

1INN N39/d0dd AYYVO

o<¢_ %S» ©©oo om_%om?% ©o0o0o0 om_mN_,_

Two level .6 bit CLa adder

1
>

Figure 6. !

81

.« Soe N
. . .
IR T PP SN G v

PP
s e 1 e s

'.;:" to the XOR operation needed to realize the P;'s and the G;'s. Three levels of gat-
ing are also needed by the summation unit for the same reason. It produces S;
-) from the logical XOR of P; and C;_;. The block carry-look-ahead unit performs
o two functions, each of which requires two gate delays. First, the BPJ- 's and the

BG;'s are developed in accordance with equations (6.9) and (6.10). "After" the

BP;'s and the BG;'s are formed the BC's are realized by eq(6.11). This forma-

R
D

.,‘ ¥
PRI ArLIeN

tion of the B('s takes place in the standard CLA unit and therefore introduces

£

- two gate delays. The BC's are then passed on to the next most significant BCLA
where another two gate delays are required to develop the remaining carry
terms. The two-level adder requires a total of twelve gate delays whereas the
- one-level adder (due to the absence of the BCLA level) requires only eight gate
delays. The equation for the remaining carry terms is developed by using equa-
tion(6.7) with slight modifications and limiting the subscripts to certain allowed
values. Each BCLA produces only three carry bits. Redefining C_; as BC_;, the

carry bits for a sixteen -bit two-level CLA adder are determined by:

Co,a,812=Go4,812 + BC_13711P0,2,8,12 (8.12)

Ci5913=G15913 7+ Goas12P159.13 + BC_13711Poas12P 15912

ot
s

| AT

C26.1014=G26.10.14 T G15913P26,10,14 + Goa812FP15913P 26101 T

RN T

BC_13711P0,4812P15.913P2610.14

S The carry bits formed by equations (6.11) and (6.12) are combined in the sum-
mation unit in accordance with equation(6.5) to produce the r‘esuitant vector 3

. For a one-level adder,a fanout of fifteen was experienced by the P, out-

A put in developing Cy4. Equation{8.12) shows thal this fanout is reduced to three

for the two-level adder. The compromise is an increase in hardware complexity
“ and four additional gate delays inherent in the two-level type.

| Table(6.1) itemizes the order in which the intermediate results are
formed,the unit in which they are formed,the amount of gate delay, and the per-
tinent equation numbers.

This section developed the theory of carry-look-ahead addition. The infor-

mation and equations listed in Table(6.1) and Figure(8.1) provide the starting

point for the VLSI project described in this thesis. Pipelining, carry-look-ahead

-'.:j-';' addition,and PLA structures are combined in the next section to develop an ini-
" tial "paper and pencil” functional unit design of the thesis project.
vl

A Intermediate Unit gate Eguation
k.- Results delay #
.'\-‘

o Pi's CP/G 3 (6.3)&(6.4)

> Gi's i
- BPj's BCLA 2 (6.9)&(6.10) |
. BGj's |
ey i
BCl's CLA 2 (6.11) ‘
e Ci's BCLA 2 (6.12) |

' Si's sumM 3 (6.5) ' |

N |
L

e Tab'e(6.1)

',L'

.
::j

':% 3. Design Considerations

' This section develops the initial block diagram nf the VLSI project. Recall

.

= that CAD tools called "PLAGUE"” and "PLAGEN" exisi in the NPS VLSI] design

83

\

. LN Ve e ERCAA N RN L. . ._..7\‘
e T B R R cOA T A j
. . L SR S . S Y O R N TR T R T A TR T R T Y

...............................

NN IOy

inventory. They accept boolean equations as inputs and produce a CIF file as an

-
b
R

output. Restrictions applicable to these two software tools are:forty inputs.forty :
outputs, and one hundred and fifty product terms. Capitalizing on the power and '_;:
convenience of these two CAD tools, all of the combinatorial logic needed to real- 3

)

4
o
-4
'1
1
4

ize a sixteen-bit adder is replaced by PLA structures. Since PLA structures are
used exclusively to develop the equations whose numbers are given in Table(8. 1),
CLA addition is re-evaluated at a PLA level rather than a gate delay level. It is

conceivable that on one extreme an adder can be made from one "large” PLA

¥ structure. The output S could be tediously determined in terms of 4 and B.
1 This produces a 'single" stage adder. An adder of this type would have an enor-
E mous number of product terms. The huge fanout would probably render the

design physically unrealizable using present technology. On the other extreme,
the adder can be made from many smaller less complex PLA structures. Both
extremes appear to have only two levels of gating when using the NOR-NOR form
of PLA. This two levels of gating does not consider the fact that the complement
of the input variable as well as the variable itself must be delivered tc the input
NOR plane. In order to supply the complement of the variable, an additional
inverter must be placed between the input variable and the input plane. Also, for
the NOR-NOR structure, an additional inverter must be utilized to invert each
output term. This translates to a minimum gate delay of four for the NOR-NOR
PLA structure. Four gate delays are experienced in a "complex" PLA as well as in
a "simple” PLA. This might first suggest that the fastest adder is the extreme
"single” stage model since both the complex and the simple versions have the
same number of gate delays. This is not correct. The "number” of gate delays is
equal but the "delay” in each level is a strong function of fanout. An input line
(variable) is capable of charging one inverter gate above threshold in much less

time than it takes to charge,for exampie, ten inverter gates above threshold.

,’.34

............... . .
------------- A S T ST . -

........ Wt o P . R R i R . ‘.".“', I = N e ot - A .
A_.::“:‘ v L N W, L Y LWL R e St B A A, et e A at Y. tataalaiaiaalaiata atata. o5

A AN LI L a8 AR tr S S LR RPN I M i A S S b e Wl i il sl M ARt A A S-S et S gt

M ld

This analogy applies to the one and two - level carry-look-ahead adders. Recall
that a one-level adder has a total gate delay of eight while the two-level adder
has a total of twelve. The maximum fanout for the one-level sixteen-bit adder
was shown to be fifteen while the maximum fanout for the two-level adder (using
four-bit BCLA units) was three.Therefore, it is possible for the two-level adder
with the higher muitiplicative gate delay factor to have a shorter overall add
time. Clearly, the successful CLA - pipelined design requires a balance between
the number of stages, the fanout in each stage, and the overall complexity of the
design.

The first “attempt” at the design originated as a transformation of
Table(B8.1) into a pipelined adder. The table suggests five distinct stages. The
first stage realized equations(8.3) and(6.4) in PLA form. The second PLA realized
equations(8.9) and (6.10). PLA three implemented equation(6.11). Stage four
developed equation(8.12). Finally, the last stage produced the final result by
realizing equation(8.5). D type flip-flop circuits provided the interstaze storage
devices and were controlled by a two-phase non-overlapping clocl. '[‘he.”unuscd"
variables were simply passed from input latch to output latch in synchronization
with the data flow. [REF.1:chap.7] provides an excellent discussion on system
timing in LSI circuits. Since no particular constraints were placed on the project
other than those induced by the PLA CAD tools, an artificial cne was created The
five-stage design was obvious from Table(6.1). The "requirement” for a four-stage
adder was introduced to investigate the interaction between the number of
stages,fanout,delay,and complexity. A re-design reduced the number of stages
from five to four. This reduction was accomplished by recognizing that the
block propagate and the block generate functlions(equations 6 9 and 6.10) could
be determined in terms ol /; and B; and be included in the first PLA wilhout

exceeding the input,output product term constraints. Complexity decreased but

85

.) FE - " . -
. LT . e e T . - . - . - . R
[P Ty S W T AP RAPUET R W Y Y SN T e A A Tt R P O S P U

........

ARSI)

.2 F

a2

)

PRy & ordhiL et iirk . - e

L] .
...............

...........

the fanout in PLA #1 increased. An increase in fanout results in a decrease in
operating speed. The tradeoff between complexity,speed,and fill time was con-
sidered acceptable for an initial VLSI design project. The exact equations and
the input/output variables for each PLA are given in Appendix(E). This appendix
contains the input files to the “PLAGUE" software tool. A (') symbol signifies a
logical NOT.the (&) symbol signifies the logical AND and the {+) symbol is used
for the logical OR. Two final simplifications were made to the design. First,not all
of the variables are utilized in each PLA. The initial design passed these vari-
ables from input latch to output latch in synchronization with the data flow. It
was determined through a comparison between allowable chip size and
estimated PLA structure size that surface area on the chip was not a critical fac-
tor. As a result the "un-needed” variables in a particular stage were incor-
porated directly into the PLA structure. This was accomplished by defining the
output variable as the input variable in the "PLAGUE" input file. This alleviated
the need fer "stray” latches and interconnecting wiring. PLA CAD tools automati-
cally provided the extra circuitry. The second simplification was the replace-
ment of the D type flip-flop latches by dynamic registers as described in
(REF.1:p81]. This allowed the variables and their complements to be deliverad
to the input plane and the output from the output plane to undergo the neces-
sary inversion. Figure (8.2) shows 2 block diagram of the V1.1 design project.

As described in the following section,the next step in the design process is
to verify that the logic of the design is functionally correct. This is done by emu-

la*ing the design using the ILOGS software tool.

C. DESIGN VERIFICATION
ILOGS is an acronym for I nleractive LOG ic Simulator. This program utilizes

models of the operating characteristics of metallic oxide semiconductor large

......... .« . . e . .
M T L L I L AR DI L A
.........

- . I) Atat i . e - © Tt

. . - . . > . S . -
- - S T . e T R L Y S T W . T Y DA T

wl
e

LA s it T st T B o i N ta” e B4 3 I B4 Lol aas g
Y)

(-])
2] 22

0
U
T
a2

PLAGY
>

T oootil
T s oo {11
oo 3+—
I oo0 111

g2 2l

L oI ol ol
&) _— .
N —ﬂ
o
[}
(o]

PLAS
35

2|

o
L]
o

)

o]

o

o
UFINES
™1

=
1T
[0}

[o]
o]

I
f{4
144

R
NN
o (o]
(o] Q
[o]
OlLy!

N

8

MPLA2

3

o | INPUTS
o
o 3
[L Jourpurs
41
o |TERMS

]
o
—aT—j e

N>

0
U

J—0a
a1 o

t+—8
111

—J".
b~y

)

[o]

[o]

N

(+]
o
o

o |INPUTS |o
Q
| | Joutpurs

N
o | K ize

o | TERMS

Fe{PLAl
] 33

Cin

>

Ao

Bo

o

o

AlS| |

BIS| |

—MT[—IA
%)

Figure(8.2) Block diagram

87

DI . .
R I A T T R et Wt
. "f:p"f o e "L".‘l- R A TS R S P N

e L
R I

LSRN WA ST YU ULUPS U SR

e h e h
SN Y WY |

:“:3 scale integrated circuits. Random access memories, read only

_:: memories,programmable logic arrays as well as conventional gates including

a) inverters,AND,NAND,OR, NOR XOR.etc. can be simulated using the ILOGS pro-
. gram. Clock specifications, input/output methods, power, and ground connec- f

»: tions are also provided. The turn-on and turn-off delay times of the individual ‘

‘L\" gates as well as the access time for the memory devices can also be assigned in

order to more closely realize the real world design. Indigenous to most digital

o logic circuits is a large number of identical logic structures. ILOGS contains a

%\ macro "deflnition" feature so that these identical structures need only be

‘ defined once on a primitive level. Subsequent usage of the structure can be

, accomplished by "expanding" the macro definition. New node names are

-J'.‘E assigned in the expansion statement. The result is a replication of the initial

:E) definition. From the above discussion, it should be obvious that ILOGS is a very

- complex and powerful software tool.

\ It is conceivable that a small computer could be emulated by the ILOGS pro-

\ gram. Because of the complexity of ILOGS, it is beyond the scope of this thesis to
. provide an in-depth discussion on all of the data structures and terminal com-

,t“f; mands found in ILOGS. Rather, only the necessary information concerning the

\:' verification of the VLSI project is provided. The /LOGS USER'S MANUAL version

. 2H [REF.10] should be referred to by first time users of ILOGS.

Ei All of the software tools discussed up to this point are processed on the VAX

:: 11-780 computer under the UNIX operating system. ILOGS is run under the VMS

‘ . operating systemn. NPS possesses two VAX 11-780 computers. One uses the UNIX

.‘:: | operating system and one uses VMS. Fortunately, the VAX computer which util-

:."': izes the VMS operating system is also capable of emulating the UNTX operating

.‘ system and the ""vi” editor. Therefore, it is not necessary to learn an additional

operating system and editor to use the ILOGS program. Although it is culturally

88

-

AR Sl - G T S A A e
L R e T A e S s T L . A N T e e e

enriching to become familiar with two different editors and operating systems, it
is recommended for a person who is familiar with neither VAX system to learn
and use the UNIX/"vi'editor on both computers. Appendix(A) describes the
VAX/UNIX system. By learning one system well,the overall proficiency of the
designer is increased. The necessary information to use UNIX on the VMS VAX
computer is given in the login sequence.

There are two types of information which ILOGS processes. They are data
information and terminal commands. Data information can be subdivided into
three main categories. They are: 1.clock/table data, 2.network data, and 3.out-
put specifications. The clock data is used to define highly repetitive timing infor-
mation as well as constants such as VDD and GRD. The table data provides a
means to generate inputs to the design if needed. Network data is the "heart” of
the digital circuit. This data describes the topology and characteristics of the
circuit to be simulated. Included are basic gates,ROM's RAM's PLA's,macro
definitions,macro expansions and connections through the use of identical node
names. Two nodes at different points in a circuit are considercd to be connected
if they have the same names. Output specifications designate the nodes that the
user desires to analyze. Simulation of a circuit begins with the creation of a file.
This file contains all the necessary data information to simulate the design. Once
this file is completed, terminal commands are used to perform the desired
operations on the data file. Several of the more frequently used terminal com-
mands are explained later in this chapter.

The translation of Figure (8.2) into a data file is described 1n the following
discussion. The actual data flle tor the sixteen-bit adder required 953 lines of
code. Only parts of this data file are included in' this thesis since the structure of
the design is highly repetitive. The only difference between stages is the size and

function of the PLA's.The input/output registers are identical in structure but

89

differ in length. A good understanding of the operation of ILOGS can be obtained
by analyzing the three main groups of data information as they appear in the
adder file. Figure(6.3) lists lines (7-25) of the data information file for the
sixteen-bit adder. This section of the file describes the clock operations and

input vectors utilized by the circuit. Comment statements are denoted by a "$"

|

sign. On any line, all characters to the right of a "3$" are considered to be com-
ments and are disregarded by ILOGS. Lines(9 and 10) describe VDD and GROUND.
A clock statement begins with a "name" and is followed by ".CLK” to denote that
the node “name” is a clock and that "time-state" pairs follow. Line(9) is inter-
preted as : a node named VDD is a clock and at time zero VDD is "driven” to a

logic "1” (D1) and remains high indefinitely. This is simply a method of providing

7 g define clocks

8

9 VDD ,CLK 0Dl

10 GRD .CLK 0 DO -

11 PHI1 .CLX 0 Dl 20 DO SO D1 70 DO 100 D1 120 DO 150 D1 170 DO 200 D1 220

12 + DO 250 D1 270 DO 300 D1 320 DO

13 PHI2 ,CLK 0 DO 25D1 45D0 75 D1 95 DO 125 D1 145 DO 175 D1 195 DO 225

14 <+ Dl 245 DO 275 D1 295 DO 325 D1 345 DO

15 §

16 $ define inputs

17 s

18 .TABLE IAl5 IAl4 IAl3 IAl12 IAll IAl0 IA9 IA8 IA7 IA6 IAS IA4 IA3 IA2 IAl 1A0
19 + IB1S IBl4 IB13 I812 IB1ll IB10 IB9 IB8 IB7 186 IBS IB4 IB3 I82 IBl IBO IC-1
20 0 0110101010011100 11100101C1100011 1

21 35 1111111000111000 0101110100000100 O

22 85 1000101000000100 0110101111100000 O

23 135 0100111111010100 0010101010101010 O

24 .EOT

25 §

Figure (6.3) Clock and vector information 4

the necessary power connection to the circuit. Lines{i1-14) describe the two-)
phase non-overlapping clock. The node named PHI1 is driven to "1" at time zero I

and remains at 1" until time 20. At time 20 PHIi is driven to "0" (DQ) and q

90

ey O T R

DR TP " Y R T . e - A IR < -
A N S R P o Setel el . 94
i e A A e . y - 5 - . ‘“,_\._A;_A’_‘,__A_'_A:‘LL‘.A,'A‘l\;‘_’-!_l-t ,‘-_n..'\.“ e

[y
', o

Ll
AN I]

B
* et

>4
A

14!
3

¢
£

£

NTRRNT

.- “. {‘ 4

L eV Ve a s

. PLIVE]

Sy Ly,

* oA,

remains there until time 50 etc.etc. PHI2 is described in a similar manner. When
longer repetitive clock sequences are needed, a "repeat” feature is utilized.This
allows the clock to run indefinitely. Input data is shown in lines(18-24). The
".TABLE" on line (1B8) and ".EOT" (end of table) on line (24) delineate the extent
of the table. The input variables starting with "IA15" and ending with "IC-1" (a
"+" indicates a continuation of the previous line) assume the values of the
binary digits listed on line(20) from time 0 to time 357, on line(21) from time
35 to time B5™ etc. For example, at time 135, 1A15=0, 1A14=1, 1A13=0, .IBi=1,
IBO=0 and IC-1=0.

Figure (8.4) lists lines (27-37). A macro definition is described by lines (28-
33). A macro whose name is PLAT begins on line (28) and has four external nodes
called (IN,PHI1,OUT,OUT-). Lines (29-32) define the circuitry of PLAT. This cir-
cuit uses three NMOS inverter gates denoted by the gate type designator

(.INV/N). The name of the output node of any conventional gate is the name of

27§

28 .MACRO PLAT IN PHI1 OUT OUT~
29 OUT ,INV/N A2

30 A2 L.INVANN Al

31 OuT- .INV/N Al

32 Al IN .SWOR PHIL

33 .ECM PLAT

34 *LATO PLAT IAQ PHI1 AO A0~
35 *LAT1 PLAT IAl PHIl Al Al~>
36 *LATZ2 PLAT IA2 PHI1 A2 A2-
37 *LAT3 PLAT IA3 PHIl A3 A3~

Figure (8.4) Macro definition and expansion

that gate and is always listed first. In this case, (OUT.A2,0UT-) are the three
inverter gates. Inputs to conventional gates are listed after the gate type desig-

nator and are (A2,Al1,and Al). Line (32) describes a "switchabie-wired-

91

e T Tt T vt aT et e, e e- A
‘nr » {'-.\ "t ":\. PR S R T T

.........

Pl i

OR"(.SWOR) circuit. ILOGS version 2H does not support MOS "pass" transistors.
Therefore, the NMOS pass transistors in the input/output registers had to be
modeled as a switchable-wired-OR. Both possess nearly the same characteris-
tics. For the NMOS pass transistor a positive voltage above threshold on the gate
eflectively shorts the source and drain terminals. When the voltage on the gate
is below threshold, the short is replaced by a very high impedance. The (.SWOR)
circuit operates in the same manner. In line(32), the node names listed before
(.SWOR) become connected when the enable signal-the node name following
(.SWOR)-becomes "high” and disconnected when the enable signal becomes
“low”. In this case, nodes (A1) and {IN) are connected when PHI! is "high" and
disconnected when PHI1 is “low". The function of PLAT is to deliver a single vari-
able and it's complement to the input of the PLA The (.SWOR) allows the charge
to be "trapped” by disconnecting {Al) and (IN). Figure (6.5) shows a schematic

diagram of this macro definition. Lines{34-37) of Figure(8.4) show four macro

P 2

Figure (8.5) Circuit diagram of macro PLAT

<, expansions of the macro definition named PLAT. Thirty-three macro expansions
of PLAT arc needed to realize the dynamic input register that provides inpuls to

E -
? the first stage PLA. For example,in line (36), *LATR assigns a new name to the

i i S i VN AR LT VN VRN R TR TN BTV W VR R T W g T — —— ot o |

..................

“El_.“ .

|

macro PLAT It is now known to ILOGS as LAT2 with external

connections(IA2,PHI1,A2,A2-). These newly defined external connections must be 'j
in the same order as (IN,PHI1,OUT,OUT-). The replacement name {(IN) now 5
becomes (IA2), PHI1 remains unchanged.(A2) becomes (OUT), and {A2-) replaces .J
(OUT-). The replacement names must match the order of specification for the

k

macro definition. Line (36) of Figure(6.4) realizes the following circuit shown in
Figure (6.6). A comparison between Figures (6.6) and (6.5) shows the relation
between a macro definition and a macro expansion. This is a valid expansion
even though (A2) appears on both the input and output of the same inverter cir-
cuit in Figure (6.6). ILOGS separates node names used inside a macro definition
from those referenced outside of a macro definition. To realize this single input

circuit, only one line of code was needed instead of four. There are one-hundred

] [\A A2~
AL QD Al L
I JSWOR |
e e m e e e e = =]
Figure (8.6) An expansion of the macro PLAT '
]
thirty-five PLA input circuits needed to realize the four-stage adder. Four- N
-
-4
hundred and five lines of code were saved by using the macro expansion feature ._:‘
of TLOGS. A similar procedure was used for the PLA output circuitry A single ﬁf
macro named "STAGEOUT" was defined. An additional one hundred twenty one !!
B
93 T‘n
-

CRE AU S e . T BN
o TP I U, T P AL PO S TR L. O S N N T [P R A

1

s e .
a
A A N SN

PR
T 4 s 2

PN
LINE S Y A &

expansions of STAGEOUT were utilized. The power of the macro feature in ILOGS
network data is obvious.

Lines (B55-872) are shown in Figure (6.7). Line (855) determines the begin-
ning of stage four PLA and ".EOP"{not shown)signifies the end. The input plane
and the output plane both implement the NOR function. This is shown by
(.NOR/N .NOR/N) on line (855). The input variables are listed starting with
"CARRY-1" in line (856).The complement of a variable is denoted by a trailing(-)
variable string from the output variable string. Output variables begin on

line(B63) with "SUMO0" and end with "SUM 15" followed by a slash.A one-to-one

855 .PLA .NOR/N .NOR/N

856 <+ CARRY~1 CARRY=l- CARRY0 CARRY0D- CARRY! CARRY1-~ CARRY2 CARRY2-

857 + CARRY3 CARRY3~» CARRY4 CARRY4> CARRYS CARRYS- CARRY6 CARRYS6~

858 <+ CARRY7 CARRY7~ CARRYS8 CARRY8- CARRY9 CARRY9-~ CARRY10 CARRY1Q-

859 <+ CARRY1l CARRYll-~ CARRY12 CARRY12~ CARRY!3 CARRY13~ CARRY14 CARRYl4~
860 + PF00 PFOQO- PF10 PF10-~ PF20 PF20~ PF30 PF30- PF40 PF40- PF50 PF50~
861 + PF60 PF60- PF70 PF70-~ PF80 PF8)- PF90 PF90~ PF100 PF100-~ PF110 PFll0-
862 + PF120 PF120-~ PF130 PF130- PF140 PF140- PF15C Priso-/

863 + SUMO SUM) SUM2 StM3 SUM4 SUMS SUM6 SUM7 SUM8 SUM9 SLM10 SUMll SUMI12
864 + SUM13 SUM14 SUM1S/

865 wl x..l.......-‘...Ill..."'..ll.‘IIXI.l.l.ll.l..‘....!.t..co..l..'
866 + Xeoooososanssone

867 +U2 .x......‘..'...I..‘....'.....‘..x.........O.....'...‘.....I....l
868 + x.l.......'..l.'

869 +U3 .QXOO..i.'..ll...I..l.....-c...l."X.'..Ol..I.‘Q..OQQ....C...IO.
870 + eXeooeassossones

871 4”4 .O‘Xl....-lI.I.....ll........n..le.OC..!IO'.O..O."'O.'.n.'llI.

872 * .x...."...l.".

Figure (8.7) Partial description of stage four PLA

positional linear relationship holds between the location of the input/output
variables in the list and the following array connection terms. An (X) represents
a connection and a (.) represents no connection. Consider lines{B65 and B866).
Line(866) is a continuation of line(B865). The sixty-four input variables

correspond (one-to-one) with the sixty-four possible connections on line(B65)

91

Ay ML WY W T W . S I W T

b e M L aea e e ki l o P s

P T S

R N R LN 7Y B Saime & 2+ -

:

[T — VNP

CdlR U Ca'a 4 Ca

VPR

Similarly, the sixteen output variables correspond to the sixteen possible con-
nections on line(B66). For example, the first {(X) in line(865) corresponds to the
first input variable CARRY —1. The second (X) in the same line(position thirty-
four) corresponds to PFOO .Both of these input variable are related to SUMO
since the (X) connection appears in position one of line(866). In the same
manner, lines(867 and 868) relate the variables CARRY—1 and PFOC to
SUMO. The ILOGS NOR-NOR PLA realization translates lines{865 through 868) to

the following:

SUMO=U1+ U2

SUMO0={CARRY—1) + (PF00) + (CARRY—-1) + (PF00)

The application of DeMorgan's theorem allows SUMO to be written as:

SUMO0=(CARRY—1)(PF00) + (CARRY-1)(PF00)

The SUMO variable is inverted by the expansion of the macro STAGEOUT. This
operation produces the NOT of SUMO and is denctecd F'S0. FSO {final sum 0) then

has the following equation.

FS0=(CARRY~-1)(PF00) + (CARRY-1)(PFO00)

Tl

This is the required XOR logical function needed to produce the
(see equation 6.5). PLA structures and the associated input
provide all of the network data to realize the nixieer -y

code.

9

HD-R136 356 ¥LSI (YERY LARGE SCALE INTEGRATED) DESIGN OF R 16 BIT
YERY FAST PIPELINED CARRY LOOGK AHERD ADDER{UY NAVAL
POSTGRADUATE SCHOOL MONTEREY CA J R CONRADI ET AL.

UNCLASSIFIED SEP 82 F/G 9/5

et wr

U R SRR A e s T g Tt Tt Sl

A e)

.

IR X

28

B s

et

wa;u .
i

233
S EEE

B EEFFTITR

%

L T VTR

B X R TR

MICROCOPY RESOLUTION TEST CHART

[l o Sa L e it e o

NATIONAL BUREAY OF STANDARDS-1963-A

X W e Y

€

N

Ty o e

¢
%
¥
i
m

KA
G AL

£

vy

s

el

L

The (.OUTPUT) specification is a means to observe the operation of the cir-

cuit. Lines (948-953) shown in Figure (8.8) provide a concrete example. Node
pames following {(.OUT) are the nodes of interest to the designer. States of each
node listed are included in the output table. In this case, the two-phase non-
overlapping clock and the sixteen sum bits are the nodes of interest. Terminal
commands can display or store the output table in various forms.

Although only portions of the sixteen-bit adder file in ILOGS readable code
are shown, enough information has been supplied to understand the transforma-

tion of the adder from block diagram form (Figure 6.2) to design verification

form.
948 S output the sums
949 S
950 $
951 .OUT PHI);;PHI2;;FS15;FS14;FS13;FS12;FS11;FS10;FS9;FS8;FS7;FS6;FSS;

952 + FS4;FS3;FS52;FS1;FS0O
953 END

Figure (6.8) Output specifications

Many terminal commands exist in ILOGS. Only those necessary to verify the
proper operation of the adder are discussed in this thesis. Once the design file
has been created and is residing on bulk storage(disk), a command to invoke
ILOGS is issued. Under the VMS operating system "RUN ILOGS" accomplishes this
task. The cue "ENTER COMMAND" is returned. Retrieval of the design file from
disk is the next step. "INPUT [FILENAME]" reads the flle trom the disk. "SIMU-
LATE FROM t1 TO t2” invokes ILOGS to simulate the design from time (1) to time
(2). The starting and stopping times should be consistent with the clock

specifications. Sirnulation time frames can be less than but not greater than the

clock duration. When simulation is completed,the command "{PRINT.TYPE.or

S R W Y TR Y] ” Ty . . p : Y . v
ANK] e Roexgich 4t = LA e S LA R R TR T e LT TR R R T Ve T >

STORE) OUTPUT FROM t1 TO t2 ON CHANGE" causes ILOGS to print on the
lineprinter,type on the terminal screen, or store on disk the states in tabular

' ; form of all the nodes listed in the (.OUTPUT) specifications each time any node
3‘(listed in the output specifications changes state. Many more commands exist
i) and there are many options, however, the above commands provide the basic
f‘ repertoire needed to verify the design. When the simulation is completed and
» results recorded, "EXIT” will return control to the VMS operating system.

y Figure (8.9) is the ILOGS output that verified the adder design . Note that an
%E output is not obtained until the fourth time PHI2 is asserted "high". Also, a
% tiiﬂerent. correct sum is displayed for each subsequent assertion of PHI2. The

four resultant sums are derived from the input vectors listed in the TABLE

specifications (lines 18-24).
With the design verified for proper operation,the next step in the VLS] design

procedure is to begin a "bottom-up” layout of the project utilizing the chip lay-

% out language (CLL).

D. LAYOUT

‘j}; Chapter four gives an in-depth description of the CLL CAD tool. The building
% block approach.PLA generation.and the chip layout language are utilized in this
‘: section to produce the VLSI design. BEach step of the layout is discuzsed with
; reference to the flle or program tﬁat was written to realize the final chip. For
,3 clarity,all of the files or programs are listed in order of reference in
“ " Appendix(E).

ﬁ: : The Stanford University cell library is used exclusively in this design. Four
‘% major "cells” were required that were not in. the cell library. As a result, the
L4

missing cclls were created and added to the list of uscable “puzzle” pieces. The

"

%]

first step in this design was the creation of the four PLA structures. PLA's one

x4
"

RAARD RN LAY

- o T m e - .
T T T e,
e ta¥at e

Wb

3

w

1

! Lo T UREEREEEEERERECNODOOODOODODO0OO0O0OOOO
e 3~ B EEEEEE R EEE N ERRODODOOOCODOOOOOO
(PN,)] X 8 EEREEREEEREXEOOOO~AA Attt
e DM XK EEEEREREREERODODOOAAAANOOOO~~ a
W E R E R EAREEEEE W EBROOOCOAAAMOOO O~ m
L A REEERREREREREEOOOO ™ gl rd o)t~ u
@ 0o € EEEEEEREEEEEROOOODOOOOAAAAANA <
0~ BB R R R R AL E TR ERNOOOOOOCOOMHAMN~OO 5
fx U0 O X BEERREEREEEERREEOODODOAAAAN A4~ O0O M
o X EEEEEEEXEREEOODOOAAA~NO0O0O0O0~~ W
BUNAO & B & EEEEEEEEEEEODOOODOOOAAN~400 °
BiNr4r4 8 & & &8 B2 88 888X XEODOOODAA~N1O0O0O0O 1~ M ”
e~ NN € & 2 & 8 & &8 B EXEEERAAAAAAAAAA A A~ Q
GNAM X & & EEEEREEEEEEEXEOCOODODODODOOO A~ w
BUNAT & EEEEEREEE SRR K ottt —

. BNAN & xS S QNS AR EROOO0O0O0O0O0OAM~~~00 M

g
J ALHN OO0 0O0ANO0O0OA000MO00~000~A000A0O m
Q&I+~ MO0 O0OM000MOO0ONO0O0O0O4000MN0QQO0~000 m
mowﬁﬁwnn%mmﬁﬁmmn
ettt

ERRT IR EEN 2 oY - Ry

ity

o

through four listed in Appendix(E) describe the input files that were submitted
to the CAD tool "PLAGUE". File "plal1"(CIF#950) lists the boolean equations that
realize the F;'s,Gx's, BP;'s,and BGj's in terms of the 4;'s and B;'s. File

"pla2”(CIF#951) forms the B(;'s. File "pla3” (CIF# 952) develops the (;'s and file
"plaq"(CIF#953) produces the S;'s. There are several options available that can

effect the output of the PLAGEN program. The PLAGUE-PLAGEN tools were ini-
"ti tially used without any options to obtain the size of the individual structures.
¥ Using the sizes of the PLA's and of the selected input/output circuitry, a floor
plan was created,Figure(6.10),that accommodated the chip size limitations of
8880 X 6300 um. Standard cells for PLA input /output circuitry were selected
& from the Stanford cell library. PlaClockin and Afterburner were used for the
;? input and PlaClockOut was used for the output. The input and output circuits
\; have the capability of either being attached to the bottom or top of the
N . appropriate plane. It is possible to erroneously transpose the input variables
a and their complements. The PlaClockIn/Afterburner combination accepts a vari-
f:} able from the bottom (arbitrary reference) and, after inversion and buffering,

__ outpuﬁ the variable on the right top and the complement of the variable on the
K left top for insertion into the PLA plane. If this cell combination is rotated
180° (input from the top) then the variables are switched. Care must be exer-
.: cised when attaching the input circuitry to the PLA plane. The "-¢" dption of
5,2 PLAGEN automatically complements the connections within the PLA plane. Since
“gf the output plane only has one line per output variable, this does not apply to the

5 output circuitry. However , PLAGEN automatically provides PlaPullup pairs on
5; ' the top of the output PLA plane. If layout constx.'aints require that the output of a
x‘: PLA must be taken from the top,then the “-0” option must be used. This option

prevents the occurrence of the PlaPullups on the output plane. PlaPullups

‘ deleted by the "-0" option must be replaced at the opposite end of the output

-

» S

TR .

T TR LTINS R A (AR

.
iy
.
L%
.
.
. »
-
4

‘
[
v Y
A
P
i

o
uT
PLASG

PLAZ2

IN

o
ouT

PLA I
|N ot b

O
O

OO0 o o o o o o o(]

IN
—
ouT]
o[[

PLA
I N
U

o

o

10
z
C
| TA n

O

.o
e
Y
N
. _.L
I
]

Figure (8.10) Floor plan

R 0 CRTY Frbengter

PLA plane for proper operation. The following four commands were executed to
develop the PLA structure consistent with the floor plan. The results of these
four commands are the addition of four new cells that can be utilized as any
other celis in the cell library.

plague <plal | plagen -c > plal.cif
plague <plaZ2 | plagen -0 > pla2.cif
plague <pla3 | plagen -c -0 > pla3.cif
plague <pla4 | plagen -0 > pla4.cif

PLA GENERATION COMMANDS

The next step in the design process is to attach the necessary input/output
circuitry and replace any PlaPullups that may have been deleted by the "-0”
option.Program "stagel.cll” in Appendix(E) provides a concrete example of how
this task is accomplished. This program attaches the cells PlaClockin, After-
burner, and PlaClockOut to the PLA structure #1. Lines (2 and 4) of "stagel.cil”
allow for the cell library and the newly created PLA#1 to be used by this pro-
gram. The portion of the program between the brackets can be translated as fol-
lows. Line(8) "gets” plal and places the lower left corner of its bounding box at
x=0,y=123. Line(10) "gets” Afterburner and places the lower left corner of its
bounding box at x=16,y=58. Then line(9) causes this cell to be repeated 33
times in the x direction with only one occurrence in the y direction. Remaining
lines are interpreted in the same manner with different cells and starting
points.If any transformations were listed,they would have been executed before
bounding box placement and repetition took place. Various starting points are
determined by measuring the center coordinates of the inpul/output lines of
the cells to be attached. The coordinate for the lower left corner of the bounding

101

Cad A)
L < p o

r“_y

&

iy

N e S O A RS R L Tt o0

e i S L L SRR AR R Lt e e AN LS S e - St T i A e S A ey Cet el ..

box can then be determined. When PlaClockln has its lower left corner located at
x=15 y=0 as shown in line(12) of "stagel.cll”,the two output lines abut precisely
to the two input lines of Afterburner provided that Afterburner has its' lower left
corner at x=16,y=58.. When the program is executed,another cell is formed. It
consists of the PLA structure with all of the input/output circuitry attached.The
lower left corner of the bounding box has its coordinates at x=0 y=0. Three addi-
tional PLA stages are created in the same manner.

With the four main stages completed, the next step is to layout the input/
output bonding pads.This is accomplished in program "stage5.cll”.The number of
bonding pads was determined to be fifty-three. This included thirty-two inputs
for A and B, one input for BC_,, sixteen outputs for 3, two inputs for PHI1 and
PHI2, and two for VDD and GROUND.To alleviate excessive wire run length and
“cross-over” complexities, the input pads were distributed as close as possible
to the input area of stage one. Similarly, thé output pads were placed as close as
possible to the output of stage four.The execution of this program produced a
“cell” of dimension 2500 A by 2700 A. Fifty-three bonding pads are located
around the outer edge with a large void in the middle.

A final program is needed to complete the design. It must combine the five
stages into one then provide the interconnecting wiring. This program is called
"tot.cll”. Stage five has the lower left corner of its bounding box located at x=0

=0. The remaining stages are strategically placed within stage five to allow
enough room for wire runs between stages and bonding pads. The x-y coordi-
nates for stages 1-4 can be seen in lines 11-14 of program “tot.cll". Interconnect-
ing wiring to complete the chip is provided ..by the "wire" statements in the
remaining lines of "tot.cll”.The names of the designers were added in the polysil-
icon level by "including” the program "designer.cll” in “tot.cll". Execution of

“tot.cll” produced a CIF file that contained all of the necessary elementary

102

..... L O,
.- - KR Lo

RIS

et . A Wt e . .
O T VL I LI A T

2 Abryr e B LI e R i S B B -l g0 ail o R am i geal gl - . ST e e e e WS W e e e R T

S

¥ il

N,

“ .

st a

rectangles on the proper levels to realize the adder. This design was subjected
to two remaining tests before submitting it for fabrication.A design rule check

,¥ and a logic simulation are the next steps in the design process.
%
‘?é ‘ E. DRC
,.: A "tot.sco” file was created from the "tot.cll” program. The DRC uses this file
A to search for design rule violations. The check took several hours to complete. It
' returned a flle with seven errors. These were quickly found by using a plot of the
' chip and the coordinates listed in the error flle. Corrections were made to the
'" wire list and the chip was again submitted to the DRC. The second run was com-
\ - pleted error free.

) F. SIMULATION

The circuit extractor provides a means to identify various nodes in the design
by number. Nodes of interest (input pads, output pads,VDD,and GROUND) are
¢! each assigned a label in order for the chip to be simulated. For example, locate
’ line(32) of file "final.sym” in Appendix(E). The output plot derived from the
; extractor has numbers associated with many nodes. In this case.#11301 defines

the input bonding pad that the designer called A13. The "final.sym" file is
created to prescribe this labeling for all nodes of interest. The labels are then
used by the event driven simulator (esim). Chapter four, section D, describes
the mechanics of the event driven simulator.The file “sim.in" in Appendix(E)
prescribes the clock(K), the labeled nodes of interest to "watch"(W),and the
» high(h) and low(l) input nodes. As a result of the circuit simulation,the file
"sim.out” was produced. The values for the {nput.s and outputs are listed for

each cycle. As expected,the first three cycles produced no outpul(OUT=XXX..X)

but on the fourth cycle the correct sum was obtained. Decimal output on

..............

line(28) <35294> is the sum of line(12) CIN=1, line(14) B=23270.and line(15)
A=12023. These values occured as inputs three cycles earlier in the sequence.
Several simulations were completed using various values for the input vectors.
All cases produced the correct output. Since the design was made entirely from
the cell library or computer generated cells a static check was not needed.

The design passed ILOGS verification.a design rule check, and an event driven

simulation. It was then considered ready for fabrication.

R DRI s N TR B QAR A A A AN A A AR w” o ¥ o n a0 . o st A S
Vo Y0 A B A o S A I R S A e

VII IESTING

A. EXPECTATIONS

The design was intended to add two sixteen-bit vectors and a carry-input bit
to produce the sixteen-bit sum of the inputs without a carry-output
bit(overfiow). To produce the carry-out bit, it would be necessary to implement
additional block propagate and block generate functions. This cannot be accom-
plished by a minor modification of the existing design because the input and
product term limitations for PLAf 1 are exceeded.The absence of the overflow
bit is not considered to be a significant degradation. Since the adder obtains its
inputs from a analog-to-digital converter,the analog voltage input could be prop-
erly limited and scaled to prevent bit weights that would cause an overflow. The
lack of an overflow or carry- out bit would however, prevent the combination of
two Men-blt adders into one thirty-two-bit adder.

The design was also intended to generate the sums at a very fast rate. It was
discussed in chapters two and six that the fastest clock rate at which the adder
will operate depends on the slowest stage. The slowest stage is that with the larg-
est fanout. PLA§ 1 determines the clock rate for this design.Mead and Conway
[REF.1:sections.1.3,1.5,1.13] provide some insight into the very complex topic of
system timing analysis. To perform more than a worst case timing
analysis,requires an in-depth discussion of device physics and electrical parame-
ters which is beyond the scope of this thesis. An estimate of the operating speed
was obtained by using the guidelines cited in the aforementioned sections of
[REF.1]. Shown in Figure(7.1) is an abstract representation of the “worst" case
condi ons for .ge one of the adder. A maximum fanout of eighteen exists in
the inp' - PLA plans and a meximum fanout of two exists in the output PLA
plans. When a series of inverters is cascaded as in Figure(7.1), and a change of

106

TR TMI et W
CA AT

P LI P)

. [

" " .'-"*' - =LY 'n-"."..\'— A ALY .v.‘."‘.(
AR, P U Ly \L_\h_ﬁ) VL ORI |

input voltage occurs,the charge from '“high" nodes is removed through
switched-on pull-down transistors. Additionally, the "low" nodes are charged

P
P -

o
L
.
.
N
s
o

PETACA
Ao
IV W R0 Y |

I

o 8 R ~
o
)

A

PLaCrLockIn AFTER- INPUT OUTPUT
BURNER PLANE PLANE

STAGE 1

Figure(7.1) "Worst” case abstraction of Stage one

by the previous pull-up transistors. The amount of lime for a pull-down transis-

tor to "sink” charge is less than that for a pull-up transistor to supply charge.

A
§ 2 Let the time required for a pull-down transistor to remove charge from a node
equal (7). Then,the time for a pull-up transistor to supply charge to a single

tollow-on gate is (kT) where (k) is equal to the ratio:

=2 k= Zpu = WP"'
L 7 i (7.1)
.} ﬂ d

'.;';f- Wpd
¥

Here (Z) is equal to the length(L) to width(W) ratio of the gate region and "pu”

denotes pull-up and "pd" denotes pull-down. When fanout occurs, the time to
SN

L

N sink charge from (f) nodes becomes (f T) whereas, the time to supply charge
N

- to (f) nodes becomes (kf T). Since it requires more time for a node to be
' charged, the worst case occurs when the "Afterburner” cell is tasked with charg-
* ing up the inputs to all eighteen inverters. This occurs when a logic “0"(0 volts)
KL

input follows a logic "1"(5 volts) input. Assume a logic "1" has been clocked in on

,?:: @1 and has stabilized all the nodes from node one(N1) to node six(N6) in Fig-
N ure(7.1). The graphical analysis shown in Figure(7.2) assumes that the After-
i

e burner cell is a simple inverter with (X =8). The total time for the logic "0"
:jj input to stabilize N8 is:
tmin = THeT+T+f 1k T+f o7 (7.2a)
- In this case

i;:; k=8 ; f,=18 ; fo=R
A So

2 tmin = TH8T+T+1447+27 (7.2b)
e
; j_.'j Since the Afterburner cell is a superbuffer and has approximately four times the
£,
current sourcing capability of a standard inverter, the fourth term in
o

,J

o~

!‘

3 107

B S
3
by
3
@ | | |
Uy
- sl 11 o
. l | |
et | | |
i vooe2 | | | | I
A
2) KT - l I
] | |
‘N NODE 3
» _ | '\l |
: : | —>|r|<- | |
. NoDE S l || |
| ! +HHe— kv —al |
T T N
NODE 5
. l || I\
5 ' — |
noDES | | || |
‘ | — —
:; l
. I I | |
5 | I
. feg— TOTAL TIME=T +KC+T+FKT+FoT .'
”
¥ | - |
g

Figure(7.2) Graphical timing analysis for the "worst" case.

LLACH
AV

* s
» "' LR
LN S

?

3
G

o
‘A

equation(?7.2b) can be reduced by a factor of four. This gives:

tmin = 48T (7.3)

The value of () is approximately equal to six-tenths of a nanosecond. Tau is
obtained from the fabricator's specification sheet received with each set of
chips. The value of £, is equal to the total time for a single clock phase (¢1)
it stray capacitance is ignored. Normally,stray capacitance is at least as great
as the capacitance found in the gate circuitry. Therefore, a conservative

approach is to double (£ 5;). Thus:

t in = 60 nanoseconds (7.4)

Since ¢,;,, is the total time for one clock phase of a two-phase non-overlapping
symmetrical clock scheme,this value must again be doubled. Also, a finite
amount of time must be allotted for the non-overlapping portion of the clock.

This adds approximately another five nanoseconds. Finally:

t min ¥ 125 nanoseconds (7.5a)

and
J7eq max N 8 megahertz (7.5b)

Equation(7.5) shows the expected values for the adder when a two-phase non-
overlapping symmetrical clock is used. By using a two-phase non overlapping
asymmetrical clock, f7€q s can be increased. Phase one (91) of the clock
must be long enough to allow PLA# 1 to function properly.but phase two (¢2)
may be shortened considerably since there is only one inverter stage between
the phase two pass transistor and the next phase one pass transistor. Symmetri-

cal clock schemes are much easier to implement then asymmetrical clock

109

TEITE AT

schemes. Thus, a speed versus complexity tradeoff in terms of hardware and

synchronization is apparent.

B. PROCEDURES

MOSIS requires that all CIF files be transmitted over the ARPANET. Since the
VAX computer at the Naval Postgraduate School does not yet have this capabil-
ity, the design was taken to Stanford University on magnetic tape and was sub-
mitted for manufacture by the Stanford Electronics Labs(SEL). The completed
chip was returned to SEL approximately eight weeks later. SEL graciously per-
mitted our use of their IC testing equipment to test the chips. This alleviated the
nesed to design and build a customm made tester which saved an enormous
amount of time.

The tester(a custom made design soon to be available to the public) inter-
faces the chip under test to a computer. A test program must be written in the
“C" programming language for submission to the source program called "MINT".
This test program is very similar to the file used to simulate the chip under
"ESIM”. The test program causes prescribed high and low voltages to appear at
program defined input pins at prescribed times. Output pins and the expected
values at the output pins are also prescribed in the test program. The computer
then provides appropriate cues to the user if the expected values do not agree
with the actual values. A plan for testing was created. First a short program was
written to perform a perfunctory test of the chip. This program can be seen in
Figure(7.3).The "define” statements in lines(1-8) tell the computer which pin
numbers correspond to named nodes. For example, in line(18), the A vector is
equal to all zeros. Line(19) shows the B vector equal to (0111...1) and the carry
bit (C) set to one. "CLK" forces the computer to cycle through the steps defined
in line(?7). The non-overlapping feature is automatically supplied by the

110

SERMEREREEY

T

»

»

[A 4

A 0 Rl

ey

CRACRSC R T b Sulb Sl g

TFTITRTL

e

T e ST TR TS

A

R
o0
- 0
— O\
N o
88 © ..
© 0
o — i
o <+ o
« .. .- .- .- - .- .- .-
o) o ~ o o — o o o
€ —n " "] " " " n
88 nm o o o o v o 3)
h 53 % &4 &8 HE &5 &8 568 566
B o ©8 ©O— 00 —O O~ OO OO .00
3 ™ o —~0 OO0 ~O0O O~ O~ go~=O0 _, —~O
Py ~O 00 ~0 O+ g~0 OO _,00
ﬁ“ or A, O ~ oo — O O~ o~oO oo~ -
~ - O~ 00 A0 O~ OO0 o~ _o-
< " 60 00 ~0 O~ QOO0 o« Y »
wm ml ne - [eX=] —“O O~ O~ O~ —_
-0l 872m 21.0 00 ~O0 O a0 g o
new —“~pp NO—~ 00 ~O0 O~ g~ OO 40O
0 5mm6m 00 00 ~HO O+ 4—~ OO _00
<mooAm O 0O ~HO O~ 0 O~ O«
TRaka o0 — O O~ -~ 001 —_—
-, 00 ~10 00 |010.|010 110
m..«m..m.mee m....M..._M..__m....Mo nnge 0 e 0
Rmmae A<M n<mBn<mBn<m
~NOFOO~: OO ~NNINOFDVRNO—NNTNOLDONO
1111111111%22 aanNaaNNNNNmm
L]
[}
Fi4 W e v Ee P SOy e vw e - - -y A TS
%% PRI s] ATLA 0) 0Pl
ol WO ol LU wedabw TUEDS RS Xk

g

32

2

- Ve
—ta

DR

-...-_
..-
.._
-
K
o
S
e
o
L
£
s
3
S o |
. . & e
o o < ‘...4
" n 9 ...4
L]
O O = -t ot
v-se e oo < - R
00 F00 & & - -t ."...
oo~ o000 o — .m
o~ 00 L4 ~ Y
oo —~O00 o — «©¢
010 100 o u— ’7\ ...n-‘
o©~ OO o o
010 000 p— -— W ..-.
o~ o0 4 o] ,
011 100 o —
o—0 o000 -— o 1
o~ ~00 (] =
oo L, o0 .,
00 0O -t -t
o~ LOO ., «
1100 -ooo cowd o)
o 0l ..Mo " ..M?M?
N<MNOLONLMLNOLM
AFDO- DO —~0NM
NN NG
RAAAIAP, OCORNOARIIY . AN oy
‘-v. -.'n '.vu\. f’..mlv.vo)oov-. o}t 4 tb“.&b\nﬁ#ﬂ mM £

auanae .|

v e DA i . I S iy APt S e v T
ST DAFYE S e BA A LKA AL L LA & ks bbb Sl e Db st RN ILADETRIE DA A AN A

computer. Line(21)--(S ? 0101000000000000)— indicates to the computer the
values expected on the output pins whose numbers are defined in line(6). If

these values differ from the actual values, a series of cues are printed out to the

WA - A BN

user's terminal. A sample is shown in Figure(7.4). The second step in the test

L

plan was to write a more complex program that would supply all combinations of

test vectors to the inputs of the chip. The absence of any cues on the user’s ter-
minal would indicate a thorough and successful test of the chip. Unfortunately,

the second step never had to be implemented.

ERROR CUES

"./chip.test”, line 42: pin 14 should be 0
"./chip.test”, iine 42: pin 15 should b2 0
"./chip.test”, line 57: pin 15 should be 0
"./chip.test”, line 57: pin 16 shculd be 0
" /chip.test”, line 82: pin 62 should be :
“./chip.test”, line 62: pin 64 should be !
" /chip.test”, line 62: pin 2 shouid be 1

"./chip.test”, line 62: pin 3 sheculd be 0

"./ckip.test”, line 62: pin 6 should be 0

"./chip.test”, line 82: pin 10 should be 0
" /chip.test”, line 82: pin 15 should be 0
", /chip.test”, line 62: pin 18 snould be 0
"./chup test”, line 67: pin 6% shculd be 1
*./chip.test”, line 70: pin :6 should Se O

NS ODNOUe WD —

-
[AN o]

—
oo

Figure(7.4) Error cues

C. RESULTS

During step one of the test plan, it was discovered that on all eight chips four
of the output pins remained in the "high" state and twelve remained in the "low"
state continuously regardless of the input vectors. This indication, along with the

fact that all eight chips drew approximately two-hundred milliamps over the

112

LSRR N YNNI 2 a s TR T

LV RE AT

5 i

i DDt T S AR e S AR A A S - s

normal amount of current for a chip of this size, suggested serious problems.
Microscopic inspection of the chip proved this to be the case. A large amount of
the polysilicon “runs” were missing or shifted. The photographs shown in Fig-
ures(7.5 and 7.8) point out just a few of the many fabrication errors that ren-
dered these chips totally useless. Figure(7.5) shows two output pads. Located
between these two pads is a pattern formed of polysilicon. This "poly” pattern
should be directly on top of both of the pads. If it were, the two nearby metal
wire "runs” would connect properly to the pads and the output pads would
operate correctly. It appears that VDD is shorted to GND through this misplaced
“poly” pattern. Figure(?7.6) also shows an output pad that is completely missing
the polysilicon layer.

With gross fabrication errors of this nature, these chips had no chance of pro-
ducing any viable results. Since the design has passed the DRC and the simula-
tion, there is a very good chance that, if properly fabricated, a “good" chip will

result.

DR
.......

EUACTPR L S SR

S L
INCIAT P P DR, -

-_“
¢
R
\

"A {n I

[y

S

5 i s oy - . rom n Aol o w8 a e DA Rt Pt - 4 .
¥ .
y
y 3
/ ~
¢ N
! .
L
\

- .
3 -
L .
¥ .
Y .
2 .
3 R
!]
. .
b

} o
A .
4 .
* -
A ‘-
3 - .
¢ 5
: %
3 :
ol w
4 o
‘: ~
% s
3 *

N
-
4

A 2
< ..
b4 g
! .
e Figure(7.5) Fabrication errors ..
f; :
: 114 X

SR NERA A T SR e h) Sl g g -l 80 2 A pl ol A S, B o Ar aiure A wier)

Figure(7.68) Fabrication errors

115

e . e

UL YO N ST SR

VIII. CONCLUSION
A SUMMARY
. The objective of this thesis was to describe the use of VLSI CAD tools avail-

-’ able at NPS and to provide a non-trivial example of design and implementation
‘j of a VLSI circuit using these tools. The tutorials in Chapters 3 through 5 have
:3 provided the necessary background to familiarize the designer with the available
; CAD tools. Suggestions were made to lessen the difficulties and examples were
Py provided to highlight the proper usage of the tools.
?,_'s ‘ The design and implementation of the actual thesis project (16-Bit Adder)
N _was covered in Chapter 8. This Chapter provided a thorough example of VLSI
3N design techniques and CAD tool implementation. The resuits of testing the fabri-
33 y cated chip was covered in Chapter 7. This Chapter indicated that the project

" was unsuccessfully manufactured so that evaluation of the design was impossi-
% ble. However, since the submitted design passed all of the NPS VLSI validation
Q’ tests (dre,and esim), there is a high probability that the design is sound.
W B. RECOMMENDATIONS
The following recommendations should be taken into consideration:
— 1. Re-submit the CIF file for the adder for fabrication and test the returned
g" chip for design accuracy. (Note: This has been initiated with fabrication
g_ beginning on October 8, 1983.)
' . 2. Design a multiplier chip to be used in conjunction with the adder for
:.;j implementation in a digital filter circuit.
Tl
3
34 118

B e O A A A A R S e A A I A S A AT A AR Rl A CNS) A A e e |

......

&
N
Ty
Y
N 3. Initiate a VLSl design course based on the contents of this thesis and
;_] Reference 1 in which students can combine efforts (or work individually) to
:' generate CIF files of validated design circuits for fabrication and testing.
" ’ 4, Continue software development in the area of VLSI CAD. Although the
» f basis of the CAD tools has been established, several programs have not been
)
;. investigated. The MIT software provides many such programs with the tim-
; ing simulator (rml) taking priority. Additionally the Berkeley software has
o
’g been totally ignored (with the exception of (esim) due to the unavailability of
3 " the necessary graphics terminal.
g
\.
0:\
.;“
2 -
2
bt
2
~
-;:‘
k-
o
M

|G

-

y 4

117

. e omananhhiasiath b N S
()
I
B
e APPENDIX A
83 INTRODUCTION TO THE VAX-11/780 AND UNIX
8
S
o The Very Large Scale Integration (VLSI) Computer Aided Design (CAD) tools
Lt
o at the Naval Postgraduate School (NPS) have been assembled from a collection
be |
'“ of software developed by various universities, including Stanford and Mas-
380
sachusetts Institute of Technology (MIT). Since this software was developed and
A
'j tested for use on the Digital Equipment Corporation (DEC) VAX-11/780 com-
s
o)
; puter, this computer was chosen for the NPS VLSI design implementation. This
” _system uses the Berkeley UNIX 4.1 operating system:.
)
N
.;;-’\.; A THE COMPUTER
X The VAX used for VLSI design is operated and maintained by the Computer
30 Science (CS) Department (located in Spanagel Hall (SP) room SP-500) but has
X
? y memory space and computer time allocated for the Electrical Engineering (EL)
ot Department. The present system contains 2 megabytes of physical memory with
e plans to increase this in the near future. The VAX-11/780 is a general-purpose
*)
::'j computer lying between minis and maxis in performance. Its power lies in its
061y
,_s usage of an increased virtual memory with a 32-bit address over that of its
—ye
. predecessor (the PDP-11), hence its name - Virtual Address Extension (VAX). It
20
}.? bas a virtual address space of about 4.3 gigabytes. VAX systems are highly reli-
N
Z:;: able. Built-in protection mechanisms in both hardware and software ensure
N data integrity and system availability.
i z" ,
i: In order to be able to use the computer to design a VLSI circuit or system, a
l;ﬁ: few basic concepts and procedures must be understood. The following sections
2
. provide background for the VLSI designer to work effectively with the computer
AN
:%Z: system.
N
N
¥ 118
-
N AN N et et N e T et e e N Lt e

S S an Ll e A S S A N A A A an i S i A et e S/t bt AU I Bk

o 15 1000 4

e Sata’ e

_LAIS

2 P ETrIRYET.

2Nt e

£l

13- gt ey TN, Ay A T W Names o NaW VL, LA GRS s) S

1. Obtaining An Account
To obtain an account on this computer, inquire in the CS Office (SP-515).
Once a need has been established, an account and a password will be assigned.
Additionally, the combination for the cipher lock of the terminal room should be
obtained. You are now ready to locate a terminal and familiarize yourself with
the system.
2. Terminal Room
The public access terminals of the VAX computers are located in room
SP-511. The terminals used for VLSI design face the windows in the north wall
(to the left when entering). There are five ADM36 terminals and one GIGI termi-
pal available for public use. The GIGI terminal is capable of color graphic
displays as well as black and white coding. The printer for the computer is
located in room SP-500 (the computer room) and can be accessed through the
door in the south wall of SP-E11.
Use of the terminal room is controlled by the CS Department. The room
is usually open from 0800 to 1630 on normal work days. At all other hours, the
door is locked with a cipher lock.

The following rules apply to the terminal and computer rooms:

* Ensure that the cipher locks are locked during non-working hours.

* Prior to leaving; logout, turn the terminal off and clean up the area.

* After working hours, secure the area by turning off the printers and lights.
(Provided no other users are using the area.)

* NO SMOKING in the terminal or computer rooms.

* Place excess computer paper neatly in the available boxes for recycling.

3. Login/Logout Procedures
The master ON/OFF switch for the ADM36 terminal is located on the lower,
right, back of the video monitor. (If the GIGI terminal is being used, there are
two ON/OFF switches. The switch for the terminal/keyboard is located on the

back, left of the keyboard and the switch for the monitor is located on the

119

L. . Clal] a T e W T W W - o, W e v
- . Lttt e . te .

{ g

3

N

> upper, right, front of that unit.)

~ To login, turn on a terminal. After a short warm-up time and a cursor has
o™

[

'.: appeared on the display, hit the RETURN key (<CR>). You should see

-

» i login:

"2

N If this prompt does not appear or if a strange display occurs try one or all cf the
A

& following:

3 * Type logout then hit RETURN.

4] * Turn the terminal OFF then back ON. Hit RETURN.

* * Seek help from one of the technicians.

o

' If the login prompt appears, type in your account code (usually your last name)
:f and hit RETURN. The screen should now display

""i logm.

password:

A'

N Type in your account password (usually your last name) and hit RETURN. In
5 order to protect your access, this entry is not displayed on the screen. 1f you
: make a mistake, the following will be returned
‘.1‘

’\ Login incorrect

% login:
-
i3
% . After a correct login has been completed, the system will display several lines
"
g.; of information for the user. The next prompt for the user will be
S TERM = (vt100)

o .

This is a request for the terminal type that is being used. All terminals in the

< IRLRA

terminal room have a vt100 display format, so simply hit RETURN. (If you are

et ok

120

_'.

laldea’ete®e?, ., "

e
%
:‘4
N using a terminal from a remote location via the dial-up system, type in the type _j
3 of terminal or type in fy then hit RETURN.) At this point, the system displays a '
. ; list of the current users and then stops with the system prompt :
1) :
N y
z «
¥ |
» k The percent sign (%) is the UNIX prompt which indicates that the com- ;
L puter is ready for a system command. Some of the more useful commands are)
5 presented in the section Tutorial of UNIX commands.
Yo
: When you have finished using the computer, sign off by typing
8
) logout <CR>
*-.. - and the system will display the login prompt again. To secure the terminal, sim-
X ply turn off the power switch(es). Then clean up the immediate area.
:4 4. Editing with "vi"
:j: The most popular text editor for the UNIX system is "vi." To [amiliarize
G yourself with this editor, login then type
2]
B ‘-'
o vi.tutorial <CR>
¥ ::
The display will give you prompts to complete the self-paced tuterial on the "vi”
,. editor. This tutorial will take a few hours, but will be worth the time in the long
'.: run. Once you are familiar with this editor, you are ready to learn about the
A
- other system commands.
< 5. Tutorial of UNIX Commands
4
‘. o . .
j,:. After logging into the system, the UNIX prompt (%) indicates that the sys-
%
= tem is ready for a command. In this section, a selection of valid commands will 4!
.; be presented in order to familiarize you with the computer's responses. (This is b
Ty 1
- 2
'
v 121)
-

gy Toa
vy

3 ‘. - «
A s

Py

not intended to be a complete list of valid commands but is an introduction to

the more commonly used ones. For a more complete tutorial, see Reference 2.)
Prior to trying the commands, a few general comments are necessary. In

issuing any command, if the system “locks up” or if the display appears unusual

in any way, try one (or all) of the following:

* Press the BREAK key then hit RETURN.
* Simultaneously press the CTRL and C keys (<CTRL>C).
* Press the SET-UP key then the O (zero) key then hit RETURN.

To correct an input error, press the CTRL and H keys simultaneously (<CTRL>H).
This will cause the cursor to back up over the previous character typed. (The
character may not be erased but has been eliminated from the computer
memory.) To eliminate a complete line from memory, press <CTRL>U. To stop
a job that is in progress. press BREAK or <CTRL>C. It may be necessary to press
RETURN to get the system prompt.

In the following tut.brial. user inputs are in italics and must be followed by
a RETURN. System commands are in bold type.

Prior to starting this tutorial, use vi to create the following files:

templ:
111111
This is the first of two temporary
files to be used in this tutorial
111111

temp?2:
222222

This is the second of two temporary
files to be used in this tutorial

222222
a. Passwd
To change your login password from an old password to a new pass-

word (This is advisable, since your initial password is usually the same as your

login code word.), type

122

passwd

and the system will ask for the old password. If you type in the old password
correctly, the system will request a new password. Finally, since none of the
passwords are displayed on the screen, the system will verify that your entry is
the password that you wanted by prompting you to type it again. The display
should be
swd

old password:

new password:

Retype new password:
and if the last two responses were identical, your new login password will be
effective.

b. Mail
You can send or receive messages through the computer using the

mail function. To send a letter to another user (or a reminder message to your-
self), type

mail user-name

(Your message)
<CTRL>D (ot .)

The CTRL and D keys when pressed simultaneously (or a period at the beginning
of a line) will return you to the system prompt and automatically send your
mail.

If mail is received, the computer indicates this fact with a message

of

You have mail.

Pl i - ol it S ali S S sttt Bt Bl Rt 2 ARt i it e kSN0 (e i N ag, il Al g iR "-‘r'.‘n“..r\"..'zk'- v .o v T Ar'..r_.?': L oA i

when you login, or a message of

New mail for (your-name) has arrived:

- if you are logged on when the mail arrives. To read the mail, type
6>

A list of letters saved will be displayed and can be read using
A
R P
¢
Ll

The p command will print the first message in your mail box. To delete a letter.

::': use the d command. To reply to a letter, use the r command. When you are
)
.
"‘9 finished using the mail function, you can exit to the system by typing
q .
A9
uy
< c. Man
' To see the documentation of a UNIX command (to determine its
:-3‘- correct usage). type
Ry
A
= man (command)
.:,1
% and that command's description from section 1 of the UN/X Programmers
:‘_';" Manual will appear on the screen. For example, try
e

The manual page for the mail command will appear on the screen Hitting the

SPACE bar (<SP>) advances the output to the next block of lines until the end of

124

[~
A

P
it CN

o

¢

\ ..
T
o ® s h et ST

T NN

.l-).f '

BIEE o=~ S
Ve

R DL RO 2 AR &2 4 24t O RSN Tl A A Nl el G Al A R it S A S A A e e B Al i o anedps

the manual is reached. To exit from man prior to reaching the end of the
selected manual page, hitg. - -
d. More
The best method to display the contents of a file for the sole pur-
pose of reading it is to use the more command. This function produces a display

in the same format as man, but is used for flles other than manual pages. Try

typing
more vi.tutorial

If the file "vi.tuterial” is in your directory (it should be if you attempted the vi
tutorial of the previous section), then the first block of lines for that file will
appear on the screen. You will also observe a white block in the lower, left
corner of the display. This indicates the percentage of the fille that has been
examined. As with the man command, pressing <SP> will advance the display
and the function can be ended with g.

e. Who

Now try typing
who

You should see a list of the users who are currently logged on to the UNIX sys-
tem. This is a good time to look at one of the system's special functions, the

pipeline function (]). As an example of pipelining, type
who | sort

The systern response is a sorted (alphabetically) version of the list of users. The

pipeline command sends the output of the left argument into the right

X RN

T3 PR

', T

Ve “l
a4

TR)

a e s

‘ﬁ%\ﬁ}ﬂ

| ATy o)

‘ ’.f-tll 4?"‘ :

[& & o,

argument.

If you type
who am 1

the system will respond with your login name, terminal and time of login.
f Tty
To see your terminal designation, type

tty

The computer will respond with your terminal name.
g Pwd
The pwd command requests the name of your present working direc-

tory. This is the directory in which you are working. Type
puwd

and the computer will respond with
/work/your-name

This is your login directory which is under the directory "work"” which is in the
root directory “/.” (There is more on directories and their hierarchy in the UNIX
section of this appendix.)
h. Cd
To change your present working _drectory. you must use the ed

command. Try typing

cd /work

128

.........

..........
........................

............

T & o I A2 TOMCIA TS 1A NI M A A ASAERER AR A SR A AT tSase et ar iy
)
-
29

-~

e
3’" You have now moved to the "work” directory which can be verified by typing
N pud

\7:
3

"i

. The response of the computer should be
)
z /work
:i‘
i
which tells you that you have moved into the "'work" directory.

>

_\% Now type
SN
25 ’
% cd

pud

o
ﬁ The cd command, when used without an argument, sends you to the default

b I

b
2 directory which is your login directory.

S Another way to change directories is by typing
)

’ ed.. (two periods after the cd)

: which moves you up one directory in the hierarchy. If this command was typed
3
" :‘,’: while in your login directory, it would move you to the "work" directory. Try it,
\‘
then do a cd to get back into your login directory.

¥y
, i. Date

X 1t you wish to see the current time and date, type

:
-t date

i3

i .
-::3 and the current time and date will be displayed on the screen.
ﬁ!
5

e 127

-
o~

5

,\' W '-:,\"\l",‘."‘-'.\' '.';\'E\':-.'.l_"r . _-:._~'S~;..-'.‘:;..q",::;,;.;‘"."; ' : - - ‘ . :'.. .‘ et ‘ R NN

&

- RPN

bt) «
t 4y
LR AAD pd

)

e
e
. K3

£

- % \l -. "
aza-i.-l

g |

e,
{5“‘_‘1

L2
DA N

g
\J

3

:
iR
e
L]
I
T
1

)

j- La
The Is command causes a list of all flles and directories in your

working directory to be displayed on the screen. The general form is
ls

When this command is typed, the flles in your present working directory will

appear on the screen in alphabetical order.

Now try typing
ls -

The 4 is an option that controls the output of the s command. The general form
of an option is -x where x is the paticular option(s) that you wish to activate. In
this case the 1 option causes a long printout. Note that the display is now a long
version of your working directory’s files. This output provides the total number
of 512-character blocks, the permission mode for each file or directory, the
number of links, owner, size in bytes (or characters), and the date and time of
the last modification for each file.

Another use of 18 is for listing files in another directory. Try typing
ls rwork

The result is a display of the files and directories in the "work” directory. If you
examine this output, you will see your user name along with all of the other user
names for those who have accounts on the UNIX system.
k. Chmod '
A command that may be of some use later is chmod. This allows you

to change the protection permission modes on any file or directory that you

128

JORAY

- - —p— P al T d
e A A oA i i~ A T R 4 ARl Tl T K M S B A A Sl S - S AV A S B i Srat Sred SO Ares Sees S am ana g o L nun mman aaasa s o
............. B ot T 1

own. The permission modes (as displayed with the ls 4 command) indicate who

.
Py
208,040 8-

can access or modify a given file. These modes can normally only be changed by

the owner of the flle. When a file is created (as with vi), the default permission

;. modes are

3 “rw--r—r—

o

3

(4

which means that the file is a plain file (the first -) and the owner has the per-
mission to "read from’ or "write to” the flle (rw). Additionally, any users in your

. group (as determined by the login type) have permission to “read from" the file
i (the second r) and all other users also have the "read only" premission (the
% third r).

7]

’

_.; For example, type

2]

5 ls itempl

4

and observe the permission modes. Now type

chmod +z temp1

" To see the effect, type

. ls -l templ

R
. You will observe that the permission modes have been changed to
-rWXr-xr-x
L

f ' which gives all users of the systemn permission to execute (x) your file. Since

this is not an executable file, change the permission modes back again with

129

Mo s o et P

y
)
o
-

'y
L)
|

\,,,._,
AN

chmod -z temp!

%

1%’”
PPN

To see the effect, type

Is - temp1

Now ensure that the modes have indeed been changed. A complete list of the

,.
X

N Aa A ool
. .
‘:":‘"‘; 4

'-:.;" chmod options can be obtained from Reference 2 or the UNIX Programmer's
‘ Manual [Ret. 3].

25 ,

o o

.Q.\.; - Cp
‘ "" To copy a flle from one directory into another or simply to make
= another copy of a file in the same directory, use the ep command. As an exam-

MY

i': ple, type

t;; =

cp templ temp
maore temp

A

-.32-.: You will observe that "temp” is an exact replica of temp1.

L)

' Now try typing
g

(a_i ¢
ﬁ"j cp templ /work /temp

XY

5

The computer returns an error message of

>,
5%

o cp: cannot create /work/temp
'?.y:.
{ : -
- Since you don't own the directory "work” and don't have permission to "write to"
P,
;:':2:. that directory, you can't create the file “temp.” If you owned another directory,
229
f:“ this would be the method to copy a file into it. If the name of the file (“temp” in
- this case) is omitted from the command. the default would be to keep the same
i
'~_‘, name in the copy.
N ;2:
whal 130

vl L CATRTH T T ol R A A AR ¢ £ i M ML A S A Wl Al g e T L L R N e, DR
-P\'J T PO A A
)
LA
!

|25

5 m. “'

The mv command is identical to the cp command with the exception

that it moves (vice copies) the named file into the named destination. Try typ-

%
N ing

x mv temp new

To see the effects, type
= .

You now have a flle labeled "new" and the "temp" file has been eliminated. You
b can also move a flle into another directory in the sarme manner as it can be
.;:; - copied.

- n. Rm

EA To remove a file from a directory, use the rm command. Type

5 To see the effect, type

ls

You have now removed the file “"new” from your directory. You can only remove

-
TN

oy
Ad

flles for which you have "write" permission.

o. Lpr

The lpr command sends a named file to the line printer queue. Try

LR AT
AN I e o

o"_
S

:
SRR

Xl RACA
. . L
o

"..u‘:'.a'- .t

typing

lpr temp2

P
YRR
PR

I's

)
LN

131

&

AR)

.....
------------- ..
c et . .

Benchenelice b o ol B & 2 27 2% 2" _a PRI N P M atas U Y ‘; a taialas - e

AR N
R
PSRRI

Ly

L
atal \,l.)\l'- k

“ 4

If you now go into the computer room, the nearest printer should have printed

the flle "temp?2.”

It will probably be necessary to advance the printer so that your
output can be torn off. To do this, put the printer in standby (off line) by press-
ing the ON/OFF LINE button. Then, advance the output by pressing the TOP OF
FORM button. Now, put the printer back on line by pressing the ON/OFF LINE

button.

If your file is not printed, make sure that the printer is on line then

type (at your terminal)
clearprinter

This procedure should enable your output. If this does not work, call for heip.
p. Cat
The cat function (short for concatenate) successively displays the
contents of one or more files. The resultant output can be direcind into another

file or displayed on the terminal. To display the file "temp1,” type
cat templ

and the contents of that file will be displayed on the screen. Note that for long
files, the NO SCROLL key can be used to stop the display from scrolling.

To use the same command to combine two files into a third file, type
cat templ templ2 > temp3

The result of the concatenation has now moved directly into a file "temp3.” This

file can now be inspected using

132

PPN

o
f

A\
-~

LA
4 4y ¢

i

AR

"
L
bR PSSR UK

¥ A

“

~E
O

>
«®ate

U
»

iy |

.~..

OF: " |4

L

JIJ$

'

cat temp3

The result will be a screen display of the comb‘nation of “tempi"” and "temp?.”
Note that the directive (>) causes the result of the left argument to be placed

into the right argument.
q. Mkdir

If you have the need to make a directory under your login one, use

the mkdir command. Try typing
mkdir report

To see the effect, type
s

You have now created a directory "report” under your login directory.

r. At

To execute a file at a later time (even after you have logged off), use

the at command. As an examnple of the use of this command, first create an exe-

cutable file (using vi) called "delay.”

delay:
echo "The file delay has been executed!",;

If you now look at the permission modes for this file (using Is -l delay), you will

see that it is not authorized for execution. Therefore, do a mode change
chmod +z delay

Now, type in the at command with a time 5 or 10 minutes from the present time
using

133

at (timae-to-ezecute) delay

You can now continue with the tutorial and the specified message will print out
on the terminal at the designated time. (echo is a c-shell command and will be
covered later.) |
s. Ps
The process status command { ps) is used to provide status infor-
mation for the processes that are currently active. In order to demonstrate this
function, we will start a process “in the background” using the "and" sign {&). A

good process to start is sort since it will last a long time. If you type
sort -«r /usr/dict /words -0 word.sort &
the computer will respond with a process number for this sort. Now type

ps

The display will indicate what processes are in progress and will give the
corresponding process number. To stop the sort routine, continue on to the kill
section. (Note that the sort function is explained further in the UNI/X
Programmer's Manual ; however, an understanding of it is not necessary for this
tutorial.)
t. Kill

To stop a process that is in progress “in the background,” use the

kill command. In order to stop the word sort initiated in the previous para-

graph, type

kill (process-number)

134

where "process-number” is the number obtained from the previous ps com-

{)
- mand. If you now type X
- ps j
» ’4
N the computer output should not include the sort routine.
: u. History
The history command is very useful if you wish to repeat a previ- a
L% ously executed command. It is a c-shell command that provides a list of the 1
’ -
. commands that were executed since login. Type E
% history *
, and note that a number is assigned to each command that was executed. To
. execute any of these commands again, simply type
% !(nrumber)
Z
o
: where number is the number of the command you wish to execute. »
‘ -
! Another way to re-execute a command is .
‘ A
lz "
- where z is the first letter(s) of the desired command. For exampie. type N
3]
cat temp?2 "’;
: and the "temp?2" file will print out. Now type 1
) N
z e
.
o

4 135

PO I TS
.

LR

-

-

» ® e

-

P

. %

O

By

-~

and the computer will respond with the full command followed with the print out
of “temp2." A note on the method of issuing a command -- The computer
searches your previous commands from latest issued to first; therefore, if you
specify a command with only one letter, the last command starting with that

letter is executed.

This concludes the tutorial. Although not all commands were
addressed, you should have enough experience to use the UNIX system for VLSI
design. Try experimenting with various commands to see the result. Experi-
ence and trial-and-error are the most eflective ingredients to learning the UNIX

system.

B. THE UNIX OPERATING SYSTEM
The UNIX operating system is a very complex, but flexible, system which gives
the experienced user a powerful tool toward writing successtul programs. Now
that you have enough experience to use the computer, a closer look into the
operating system will probably round out your knowledge and help to make your
use of the computer for VLSI design a little easier.
1. Hierarchy
The UNIX system uses a hierarchical approach to flle management. The
"root” directory (/) is the starting point for this arrangement with all other
directories and files stemming from it. Under the "root" directory is the "work”
directory which contains all of the "login" directories for the users of the sys-
tem. It is in this "login” directory that you will start your own hierarchy of files
and directories. Each file (or directory) that you form will stem from your
“login” directory. There is no set format for this hierarchy, so it is left up to the

user to form a structure that will best benefit him.

138

N RO

OO
Ta'e

LA

OIS - i

2. Manuals
The manuals for the Unix operating system are located on the tables in
the terminal room (SP-511). Although these manuals are quite extensive, they
are well written and provide all the information that you will need to operate the

system. The manuals are grouped together on one rack and are separated with

. heavy dividers. They are labeled UNIX PROGRAMMER'S MANUAL and consist of

the main manual {(Volume 1) and three volumes of supporting data (Volumes 24,

2B, and 2C).

Volume 1 contains all of the vahd UNIX commands and is the most com-

monly used. This volume is divided into eight sections:

Commands

System Calls

Subroutines

Devices & Special Files

File Formats & Conventions

Games .
Macro Packages & Language Conventions
Maintenance

PRI B AN

Of these eight sections. the first three will be of the most help to the average
user. In these sections are the correct usage of the general system commands
and routines. Although it appears that this volume is too extensive to be of
much use, the Permuted /ndez starting on page zziii makes it easy to locate any
command that is of interest.

For example, try to locate the manual page for the mail command. Look-
ing in the Permuted /ndex under "mail” (note the alphabetical order) you will

see an entry
mail: send and receive mail...................... mail(1)

This entry tells you that the mail command is located in Section 1 (i.e.,itis a

137

Pt et e .
'''''''''

Il i A

% - DR,

..: command). Now, if you look in that section of Volume 1, you will find the manual
,\ page for this command.

::E) Volume 2A is the initial supplement to the Programmer's Manual. It pro-
::: vides information to help the beginner get started using the UNIX system and

the “C” language.

o Volume 2B is an extension of 2A covering special features of the operating
*.::
N system.
o Volume 2C is the second extension of 2A. It covers the editing routines as
__‘QZ; well as programming in the c-shell.
- 3. C-Shell
The c-shell is a command language interpreter used by the UNIX system.
\
-
;3 It is described fully in Volume 2 (A and C) of the Programmer's Manual, so |
"‘; won't spend a lot of time on it. However, if you recall from the section Tutorial
)
of UNIX Commands under the tutcrial on at, you initiated a c-shell command of
3 ‘ echo. This was actually programming using c-shell. Although it may not seem
(€. *
f.:' apparent now, this type of programming can be an invaluable aid to you. For
» example, if you have a series of commands that you wish to execute in order
5N
o (especially if you need to repeat the series often), you can write a program in c-
'.'.:: shell containing those commands and then you will need to execute that one
*
program only. As an example, this could be a file “combo”
:‘_: who > store
EN sort < store > out
:':9, cat out
AN
If this file is executed, the result would be a sorted version of the system users
AN
-_:f who are logged on. This is a trivial example but should serve as a introduction to
"
';3 programming in c-shell.
P
Ao
152
<)
*‘
i, ~l
o 138
:2«
-.‘
A
\.‘.

N
:

4. niroduction To Programming In"C'

:3) The UNIX operating system was designed to accept programs in a pro-
j gramming language called “C". Because of this fact, the data files necessary to
X . complete a VLSI design use the "C” format. Although it is not necessary for the
N designer to be an expert "C' programmer, a basic understanding of this
:, . language will be helpful.

::4 The general format for a “C"” program is:

S
. flle.c:

Y /* This is a basic C program */

: main()

{

printf(" This is test print out0);

,

s In the above example, you can see that comments are set off by “/* ¢/." The
declaration "main()"” indicates that the main function of this program is labeled
2 "main" and has no arguments. The function definition begins with "{" and ends
':.': with "}”. Within the main function is another function “print{" which has as its
'.,- argument the sentence within the quotation marks. “Print!"” is a system subrou-
' tine {section 3 of the UNI/X Programmer's Manual) which causes the argurmnent
-" to be printed on the standard output (the terminal). Each program statement
must end with a semicolon (;).
.2 "C" is a "free-form language that doesn't care what style or format you
,.’- use, as long as it is syntactically correct.”{Ref. 4, p. 11] However, indentation

can and should be used to make the program easier to read. Most of the state-

2 ments are written in lower-case letters with the exception of symbolic names

and constants.

139

9
DRSO S S N N

To compile the example "C" program, type
: .:flz ‘ cc fils.c

The result is an executable file called "flle.” (ccis the “C" Compiler and is docu-

-_..-,'*‘ __\'3.‘.

%

mented under section 1 of the Programmer's Manual.) To execute this file, type

AOSAVEEE

L

file

T

PE

and the specified statement will appear on the screen.

l",

A

2

This has been a very brief introduction to “C" but should provide enough

basics for the user to continue with learning VLSI design. If more information is

A
)' I f

RS L

desired, consult the UN/X Programmer's Manual [Ref. 3] or Reference 4.

S

i 140

Ty vy Yo
Bun s s Se MM URAS A rrastitgagds) Ade

APPENDIX B
MANUAL PAGES FOR VLSI CAD TOOLS
141

T ew PR N)
PR SR 2
/’n‘-‘n (LM

(I OUERANASS e 3 a LS A Sl b AR ALY Al L AR LN St OSSR LRGN SHI UM ARSI RN NG S S MR S AR A AR AN AR
(.

o

A

.:ﬂ‘:i

o5 CIF(CAD1) UNIX Programmer's Manual CIF (CAD1)
N NAME

cif — convert a cif file to cifout format
o SYNOPSIS
. cif file cif [-o fila.co] [-qbedgimnpq] [-y] [-z] [-h]

" DESCRIPTION

; y CY converts a cif file to cifout format. Cif files, which are the Caltech Inter-
o . mediate Format, are described in the Mead and Conway text.

The -0 option specifies the name of the output file. If not given, the output file
<o has the same name as the input file and the extension *'.co"".

. ' The -q option says that the given layer names are not valid. For example, in the
o standard nNOS you would use -gbnq since buried contacts and two level metal
2:‘:: and poly are not allowed. -

.}': The -y option says that the Y layer is valid and should be replaced by the Z layer.
N This allows preprocessors to display the outline of a box with no internal stip-

ples.

P The -z option suppresses the printing of warning messages about zero area rec-
2N tangles.

4_: The -h option causes CIF to list node numbers and lower left corners of all rec-
BN tangles with nonzero node numbers to the error device.

' FILES

. SEE ALSO

WX cifout(cads)

5

s

?

2
s

2

3/

o

o

o

AN

2N

".:3 ~

2

-

A .’-‘ £,

L R R)

s

[4
LM

v A

Ll S P

AN

e

A
‘bJJJII.'.

PN

',
L]

CIFAR(CAD1) UNIX Programmer’'s Manual CIFAR(CAD1)

cifar — save cif files in archive format suitable for use by cificad

cifar [options] file.lib file.cif

Qifar prepares an archive file of CIF cells suitable for use with cifioad. The stan-
dard use is to have the input CIF flle split up into archive units each containing
one cell. This is useful for libraries which do not have the external and entry
point records present. Cifar can also be used to archive CLL produced files,
which already contain the information necessary for CIFLOAD.
—afar options]
Letters following are options used to control archive program ar. This
switch is required
=u Specifies that the CIF file given is not to be split up into individual cells,
but that it is to be entered into archive flle as a unit. The external and
entry records must already exist in the file if this option is used.

A file to be processed by cifar must have all calls, DS and DF commands as the
first character of the line. The required linkage is specified in comments occur-
ring before the DS. Each comment starts in column 1 of the line. The command
(ext <number>); specifies that the following cell requires the cell named
<number>. There may be several of these before a cell. The command (ent
<number>); specifies that the next subfile contains the cell named <number>.
Since several cells can be contained in a single archive subfile, there may be
more than one.

FILES
atmpXX000X, ctmpX0CXXXX temporary files
[0-9]s.ctmp temporary files containing CIF cells
/vlsi/lib/local /splitfile splits CIF file into separate files
/vlsi/lib/local /cifar
ar system archiver

SEE ALSO

cif(cad1), ell2(cad1), cifload(cad1), ar(1)

Diagnostics may come from cifar, splitfile or ar.

AUTHOR

Wayne H. Wolt, Esq.

Places temporary files on your directory. All files on your directory with names
*.ctmp are deleted.

143

A R R T e e N T T T T AR A St el an et ki Soechaco s s —— Ty

CIFLOAD (CAD1) UNIX Programmer's Manual CIFLOAD (CAD1)
3 NANE
cifioad ~ concatenates cif flles and needed library cells from archive files
=N SYNOPSIS
N cifioad [options] ...file.lib... ...file.cif...
e DESCRIPTION
Qificad searches libraries for cells needed by CIF files. The input CIF files con-
- tain records at their head declaring which library cells they need; each library,
’ maintained in archive format, contains a set of files with declarations of what
cells they contain . Cificad does not guarantee that it will satisfy all externals.

This is done to alleviate the problem of deciding what externals are satisfied by
other CIF files rather than library files. The linked set of cells appear on the
standard output.

Options:
™ - States that the standard input also contains a CIF file. This file will be
N made the last file to appear on the standard output; therefore it should
‘ contain the final cell call and the end statement.
£ FILES
/visi/lib/local/cifload
: SEE ALSO
- , cif(cad1), cll2(cadl), cifar{cad1), ar(1)
Aa T DIAGNOSTICS
Complains if there are no CIF files input. May also blow up if there are a large
number of external references in a single file.
. AUTHOR
. Wayne H. Wolf, Esq.
31 BUGS
& Can handle only a limited number of external references or entry points from a

single flle. The seeking of the next archive header is done in a slow manner
because the nature of the archive file is not well documented.

' PRIPREIN-TE UL VPRI WA v YO

et - JERNC IR
PRAT ATV A PR S Y|

— - W g LAt o dh i vl b NG A iarii At S A R P e T S
m':ﬂ".ﬁ'.?‘.?‘.ﬁ?’.-.-‘. TS TN T T TR TLATL et et RPN U

.-

.d

.

g CIFOUT (CADS) UNIX Programmer's Manual CIFOUT(CADS) .

g g

]

i e "
file.co output of CIF translator X

X DESCRIPTION o

: A cifout flle is produced by the CIF translation program. The flle represents an
integrated circuit as a collection of rectangles with layer information for each o
rectangle. The rectangle information is written in a binary format. There is also ;

some control information embedded within the file. This information is always
at the head of the flle and is written in ASCII.

All control lines start with "#' as a key, and all control lines must be collected
at the beginning of the flle. The last control line must be #end. The maximum
length of a control line is currently 80 characters. Immediately following the
"#' is a keyword. The keywords are program specific and consequently subject
to future improvements. Currently used keys are:

<space>

for comments
bounds

minimum.x minimum_y delta_x delta_y
file input flle name
noprint

tells rplot to not print the comment lines
document

tells rplot to print on 8.5 x 11 inch paper
report

tells rplot to print on 8.5 x 11 inch paper with margin for hole

punch

scale scale to be used in plot, in lambda/inch
noscale

data is not to be scaled belore plotting

Following the control lines, if any, are data lines. There is one data line per rec-
tangle. The records are written in binary form. and are to be accessed only
through standard procedures. The access procedures return floating point
numbers, but th - file is currently accurate only to within .5 lambda. The layer is
returned as a character. Current layers are:

C Contacts

D Diffusion

G Glass

1 Implant

M Metal

P Poly

Z Unknown The node number is character. If the node number = 99
then the rectangle is at a 45 degree angle (rotated clockwise about the lower left

corner).

FILES
/visi/lib/local /cifout
/visi/stanford/src/cif/cifout-data.h definitions for cifout i/o
/visi/stanford/src/cit/cilout-io.h standard i/o routines
/visi/stanford/src/cifplot /scale.h scaling package for plotting programs

/visi/stanford/src/cifplot /scale-tactor.h device-dependent parameters for

P I I O IR T Wiy Dy G N Uiy WPy

fr Ao daten. Gt ite Sart S g s Suse i et Ebait Satt A Rt gt dbeth ST AT T A T M S eI AL A R A v e et O
Rarear MECAIE o - Sl SRS ofidradal SRl e N S il . SR e T e e B Y S
At

»

. =
D

.
P

CIFOUT (CADS5) UNIX Programmer's Manual

scaling
ALSO
cif(cad1), window(cad1), rrplot(cadl)

148

N e

. T R B
WP S PRI FRLS v v

N

T % TV TR T T,y '-q
R T

CIFOUT{CADS)

w ~ v ~ v LAE And g LR et Sl gk o e | Ll A A net i adh Je e o T T T T T T
3P -_._‘i_'-.._‘q__..'..".--_'._._‘~'.‘_._.~._.‘_~_-_~_-_-m- -------- R LR A -t - LA PR

el

5 CLL(CAD1) UNIX Programmer's Manual CLL{CAD:)

. l.->.‘...‘.!li,... ‘.- ..

NANE
cll — process cll, cif, and sco files, plotting the output

. SYNOPSIS
K. cll[options] ... file ...
DESCRIPTION
QU is the VLS] project's CLL language processor. It accepts several types of
arguments:
1) Arguments whose names end with "'.cll"" are taken to be source files in CLL.
2) Arguments whose names end with **.cif'’ are taken to be source files in CIF.
] 3) Arguments whose names end with “*.co’" are taken to be cifout(V) files.

4) Arguments whose names end with ".sco” are taken to be sorted cifout(V)
. files.

d 5) Arguments that start with ''-"* are taken to be switches.

The basic operation of cll is to process the cell library externals and the ".cll”
files in order, creating a CIF flle. This file is then processed together with the
CIF for the cell library and the ".cif" files to create a cifout(V) file. It is possible
to start with a single '".co" file, instead of using "'.cll” or ".cif'’ files. Finally, any
"".sco’’ flles are overlaid on top, and the final cifout file is then plotted.

- The processing can be modified by the following switches:
T ~iz Include cit library libz.cif.
-5 Specified area is blocked out (not plotted).

—c# Produce a " .cif" file without a final call or end statement. If # is present,
use cif numbers #, #+1, etc. Such a file is suitable for reprocessing by
cll.

Process all *'.cll”" and ".cif"" files into a single *'.cif"" file with the specified
cell libraries and a final call and end. This file will be suitable for fabrica-
tion.

Plot is formatted to fit in document style {8.5X 11 in.).
Plot the output on the Versatec plotter.
Plot is formatted in report style (room for binding).

Plot a grid whose x interval is z lambda and whose y intervai is 7 lambila
(Default interval is 5 lambda).

Use a scale factor of # lambdas per inch.

Causes the named layer, I, to be omitted from the plot. The layer. !, can
o be one of more of: ¢, d. g, i, m, p.

—x{1.42
Set the minimum x to be plotted as #! lambda and the maximum to #2

lambda. Either #1 of 42 can be omitted, in which case the actnal
minimum or maximum will be used.

- ~y#1.42

: Set the minimum y to be plotted as #/ laribda and the maxmun to 5 0
d lambda Either 47 of #2 can be omillel, in which case the ol
; minimum or mna Jdmum wiil be used.

-s#l1. 42

&

bd 44

i) 147

CLL(CAD1) UNIX Programmer's Manual CLL{CAD:)

Divides your chip into #2 strips and plots the #1 th strip.
—S# Divides your chip into # strips, and plots all of those strips.
-F

Create final version of project. The -F switch sets the -C svatch, which vill
cause cll to create a complete cif file. A special feature of the - switch
is that the output file name is *./final.cif’ and all optimization is
switched off.

-T Plot the output on your terminal, using tplot. You have to be using a
GIGI terminal.

X Just do the pre-processing pass creating a '".xcll’”’ file.
-B Use backup cif expander. (This is for testing, don't try it yourself.)
A

Use alternate copy of cll2 language processor. (This is for testing, den't
try it yourself.)

-D Trace operation of cll.
-Z Use alternate CIF loader (that is, cat).

FILES
/vlsislib/local /libz.cif cif for the cell libraries
/vlsi/tmp /cll??727? temporary
/lib/cpp preprocessor
/vlsi/lib/local /ell CLL source program
/vlsi/lib/local /cll2 CLL language processor
/vlsi/lib/local/acll? Alternate CLL language processor
/visi/lib/local/cifload CIF linkage editor
/vlsi/lib/local/ cif CIF language processor
/vlsi/lib/local/acif Alternate CIF processor
/vlsi/lib/local /rsort sorts cifout files
/visi/lib/local/merge merges cifout files
/visi/lib/local /window windows cifout flles
/visi/lib/local /rplot plots on the Versatec
/vlsi/lib/local /tplot plots on GIGI terminals
/visi/lib/include include files
/visi/stanford/src/cll/pathnames.h actual names of files used

SEE ALSO

Tim Saxe, CLL - A Chip Layout Language.
cif(cad1l), window{cadl), tplot(cadl), rplot{cad1), cli2{cad1)

DIAGNOSTICS

BUGS

The diagnostics from CLL and CIF are supposed to be self-explanatery. However,
syntax error often occurs for odd reasons. The normal solution is to correct all
of the errors that you can easily locate and try again. Note that a plet will not
be generated until the CLL and CIF processors are completely happy.

No geometrical or circuit error detection or correction. What vou sav is what
you get.

148

. B PN PY \,
PO T ST D S . . SR S
N . .o . -

P S W . AR

‘:.u—..'.,i: L 9 s A o* AL NIC AL M AR LN A i et aAfE L NI BN SSE ML ML UMM S SARNMEERA N L A M A SR i e

=
N
- CONVERT(CAD1) UNIX Programmer's Manual CONVERT{CAD:)
~
(
K NANE
‘) convert — converts a binary file to ASCII
- SYNOPSIS
. convert < file
* DESCRIPTION

- Convert takes a binary cifout file from standard input and converts it to a read-
_ able ASCII format sent to standard output.
> FILES
;-_j /vlsi/lib/local/convert

' SEE ALSO
po cifout(cad5), unconvert{cadl) ,
- BUGS ,i
N 3
'
1:, :1
',: 1
Lo :

L ek

&
MR EIN

ey

F RO

149 N

3

DRC(CAD1) UNIX Programmer's Manual DRC(CAD!)

drc — design-rule-check a circuit

SYNOPSIS

dre file [shift]

DESCRIPTION

Drc does a design rule check of the input file. The file must be a sorted cifout
file (with a .sco extension). This is done with cll. The output goes to file.drc.

Dre will check for Mead & Conway design rule violations with one general excep-
tion. Electrically connected areas will not generate seperation errors, even if
they are on different layers. In other words, drc will not enforce the 1 lambda
separation between poly and diff if they are electrically connected. This means
that a 2 lambda wide diffusion wire can run along a polysilicon wire, which is
dangerous. A mis-alignment, during fabrication, of the polysilicon over the
diffusion will increase the diffusion resistance, which can be bad if the overlap is
very long.

The shift option will sirnulate a possible fabrication mis-alignment and do a more
conservative check. It does this by expanding the poly layer by 1 lambda and
then removing the expanded layer from the diflusion layer before doing diffusion
minimum width checks. The default check, no shift option, is consistent with
the rule that diffusion only has to extend beyond transistors by 2 lambda, but
the shift option allows a tighter check if you want it.

The output file format consists of a message followed by coordinates of design
rule violations. For example, part of an output file might look like:

poly min width errors:

diff minwidth errors:

10, 20

11, 20
indicating there were no polysilicon minimum width crrors, but there were
diffusion minimum width errors. Note that one error can cause several coordi-
nates to come out.

The messages are self explanatory, although there are several quirks. The shift
option causes the most commonly misunderstooed error: a "diff minwidth error”
caused by a poly-diff spacing error. This typically occurs at butting contacts.
This happens when an arbitrary one lambda polysilicon shift reduces the
diffusion line width to less than two lambda.

Pullups with "wide" butting contacts can also cause confusing errers. This hap-
pens when the diffusion overlap at the butting contact is wider {more than four
lambda) than really needed for the butting contact. This can precduce
transistor-poly surround errors, transistor-implant surround errors, and floating
transistor dra‘ * errors. The solution is to only use as much poly-diff overlap as
is necessary for the butting contact. Any extra overlap only adds unwanted
capacitance anyway.

SEE ALSO

cll{cad?).cifout{cad5)

DIAGNOSTICS

If some part of the design rule checker fails, error messages will appear in the
output (.dre) file.

150

DRC(CAD1) UNIX Programmer's Manual DRC(CAD!)

BUGS
While drc-is running it will produce many files of the form file._xz, where xx is

any two letters. These files are deleted at the completion of the dre, but
uncatchable signals (like kill -9) can stop the drc and leave the files around.

151

P
T I P WP S LR S S S

PPN WA VR

.................................

= ESIM(CAD1) UNIX Programmer's Manual ESIM (CAD1)
{. NANE .

o esim — event driven switch level simulator

S SYNOPSIS
-0 esim [file1 [file2 ...]]

o0 DESCRIPTION

i} . Esim is an event-driven switch level simulator for NMOS transistor circuits.
- Esim accepts commands from the user, executing each command before read-
SR ing the next. Commands come in two flavors: those which manipulate the electr-
o ical network, and those to direct the simulation. Commands have the following
o simple syntax:

e c argl arg? ... argn <newline>

= where ‘¢’ is a single letter specifying the command to be performed and the argi

are arguments to that command. The arguments are separated by spaces (or

= tabs) and the command is terminated by a <newline>.
[To run ssim type
' _iﬁ esim filel file2 ...
[Evim will read and execute commands, first from file?, then file2, etc. If one of
TN the flle names is preceded by a '~', then that flle becomes the new output file
oot (the default output is stdout). For example,

esim {.sim -f.out g.sim

" This would cause esim to read commands from f.sim, sending output to the
S default output. When f.sim was exhausted, f.out would become the new output
L file, and the commands in g.sim executed.

After all the flles have been processed, and if the "q" command has not ter-
minated the simulation run, esim will accept further commands from the user,
AT prompting for each one like so:
o sim>
. The user can type individual commands or direct esim to another file using the
"®" command:

sim> ® patchfile.sim
This command would cause esim to read commands from “patchfile.sim"”,
L returning to interactive input when the file was exhausted.

It is common to have an initial network file prepared by a node extractor with
perhaps a patch flle or two prepared by hand. After reading these files into the
simulator, the user would then interactively direct esim. This could be accom-
plished as follows:

esim flle.simn patch.1 patch.2
After reading the Jles, esim would prompt for the first command. Or we could
have typed:

X esim flle sim

sim> @ patch.l

sim> ® patch.2

Network Manipulation Commands

The electrical network to be simulated is made up of enhancement and deple-
tion mode transistors interconnected by nodes. Components can be added to
the network with the following commands:
e gate source drain
e gale source drain length width key xpos ypos area
Adds enhancement mode transistor to network with the specified
gate, source, and drain nodes. The longer form includes size and

, 4+, 104 i WM v K
'l ,l.' “3 ll..‘.';-_:.,'_:l_' ﬁ -

.
LA A

NERE A
»

-

-
M L%t

M - 7L

- 152

ik o
AR

s «
sals)

o,
Pl
.

MO
AN

8

)
,n;‘ |‘. 'y
-,

¥
(AR LY

PR
N WA
I B

Lt

» .‘ ‘l‘ - b
e & [

ARt
rar o,
BRPRNS

=
"

DA
I..‘l‘ Y

S es

8, 4,

................

ESIM(CAD1) UNIX Programmer's Manual ESIM{CAD1)

location information as provided by the node extractor — when
making patches the short form is usually used.
d gate source drain
d gate source drain length width key xpos ypos area
Like "e” except for depletion mode devices.
C nodel node2 cap
Increase the capictance between node! and node2 by cap. Esim
ignores this unless either node 1 or node2is GND.
= node namel name?2 name3
Allows the user to specify synonyms for a given node. Used by the
node extractor to relate user-provided node names to the node's
internal name (usually just a number).
| comment...
Lines beginning with vertical bar are treated as comments and
ignored -- useful for deleting pieces of network in node extractor
output files.
i node
Input record -- output by node extractor and not used by esim.
Currzatly, there is no way to remove components from the network once they
bave. been added. You must go back the input flles and modify them (using the
comment character) to exclude those components you wished removed. “N"
records need not be included for new nodes the user wishes to patch into the
network.

Smulator Commands

The user can specify which nodes:are to have there values displayed after each
simulation step:
wnodel -node2 node3 ...
Watch nodel and node3, stop watching node2. At the end of a
simulation step, each watched node will displayed like so:
nodel=0 node3=X ...
To remove a node from the watched list, preface its name with a
'='in a "w' command.
W label nodel node?2 ... noden
Watch bit vector. The values of nodes nodel, .., noden will
displayed as a bit vector:
label=01010020
where the first 0 is the value of nodel, the first 1 the value of
node2, etc. The number displayed to right is the value of the bit
vector interpreted as a binary number; this is omitted if the vector
contains an X value. There is no way to unwatch a bit vector.
Before each simulation step the user can force nodes to be either high {1) or low
(0) inputs (an input's value cannot be changed by the simulator!):
h nodel node2 ..
Force each node on the argument list to be a high input. overrides
previous input cornmands if necessary.
1nodel node2 ... _
Like "h" except forces nodes to be a low input.
x nodel node2 ...
Removes nodes from whatever input list they happen to be on. The
next simulation step will determine their correct value in the cir-
cuit. This is the default state of most nodes. Note that this does
not force nodes to have an ‘X" value — it simply removes them

153

.........

S R il Bl ot bl D B i A T b SIS S AN a4
)

-
ot
I ESIM(CAD1) UNIX Programmer's Manual ESIM (CAD1)
Dy]
“ i
v from the input lists. .-
{ The current value of a node can be determined in several ways: .
Y
O v R
o View. prints the values of all watched nodes and nodes on the high R
N and low input lists. -
? nodel node2 ...
" Prints a synopsis of the named nodes including their current

- values and the state of all transistors that affect the value of these
S nodes. This is the most common way of wondering through the net-
< work in search of what went wrong...
! nodel node2 ...
For each node in the argument list, prints a list of transistors con-
= trolled by that node.

"?" and """ allow the user to go both backwards and forwards through the net-

x work in search of that piece causing all the problems.
; The sirnulator is invoked with the following commands:
24 s
-~ Simulation step. Propogates new values for the inputs through the
- network, returns when the network has settled. If things don't set-
. tle, command will never terminate -- try the "w" and "D" com-
mands to narrow down the problem.
e
. Cycle once through the clock, as define by the K command.
’ 1
L Initialize. Circuits with state are often hard to initialize because
the initial value of each node is X. To cure this problem,. the I com-
O mand finds each node whose value is charged-X and changes it to
> charged-0, then runs a simulation step. If one iterates the I com-
f{ mand a couple times, this often leads to a stable initialized condi-
b tion (indicated when an I command takes 0 events, i.e., the circuit
is stable).
a Try it -- if circuit does not become stable in 3 or 4 tries, this com-
- mand is probably of no use.
- Miscellaneous Commands
2 D
" .

toggle debug switch. useful for debugging simulator and/or cir-
cuit. If debug switch is on, then during simulation step each time a
’ watched node is encotinted in some event, that fact is indicated to
y the user along with some event info. If a node keeps appearing in
[this prinout, chances are that its value is oscillating. Vice versa, it
§ your circuit never settles (ie., it oscillates) , you can use the "D"
L and "w" commands to find the node(s) that are causing the prob-
; lem. '
o > fllename
:'-3 write current state of each node into specified file. useful for make
- a break point in your simulation run. Only stores values so isn't
: really useful to "dump” a run for later use -- see "<" command.
. < filename .
read from spncified file, reinitializing the value of each norde as
e, directed. Note that network must already exist and be identical to
) the network used to create the dump file with the ">" command.

.............

b,
N ESIM(CAD1) UNIX Programmer's Manual ESIM (CAD1)
%
5]
5
o These state saving commands are really provided so that compli-
{ cated initializing sequences need only be simulated once.
2 L
::Z:: invokes network processor that finds all subnets corresponding to
Ne simple logic gates and converts them into form that allows faster
> simulation. Often it does the right thing, leading to a 25% to 50%

reduction is the time for a single step. [We know of one case where
the transformation was not transparent, so caveat simulee...]
B X..
{ call extension command — provides for user extensions to simula-
N tor
« . .

q
exit to system.

Local Extensions
VY node vector
Define a vector of inputs for the node. The first element is initially

set as the input for node. Set the next element of the vector as the
input after a cvrle.

JY

aaan
PRI AL A

Rn

: Run the simulator through n cycles. If n is not present make the
;i run as long as the longest vector. All watch nodes are reported
back as vectors.

+ RN}

N .
Clear all previously defined input vectors.
K nodel vector! node2 vector2 ... nodeN vectorN
Define the clock. Each cycle, nodes 1 through N must run through
their respective vectors.

A T

extr(cadl),sim(cadl)

)
.
* N
i: SEE ALSO
)
o]
o BUGS

.- . » .
FLARRE

3 '«.
A 4

R

YRS

155

o
LN &

My O g €, 0 Gy
S A S YO S R

o,

1°p) et hd v Sl ol > e e ool LAk Jadi sl Sl W e
F“ L o T VD e B o S Thse S ke et S SR A TSR A kRIS I e i i i A e AP S i A M A e

I.‘

<

AAAAAAA
-~
N
o

EXTRACT (CAD1) UNIX Programmer's Manual EXTRACT (CAD1)
e NANE
¢ extract — circuit extractor for a CIF file
N SYNOPSIS
o extract file
N DESCRIPTION
B> Extract is the first of a sequence of programs for setting up your design for
functional simulation. The first step is to begin with a .cif flle. This normally
X means executing the following cll command:
cll -C file.cl
. Then execute eztract and wait up to 2 hours!
» extract file
2 The next step is to plot the extracted circuit using node-plot. The last step is to
create a flle which assigns names to important nodes; this will include vdd and
i gnd, and probably phil and phi2. For example,
ol —file.sym--
g 178 wvdd
W 84 gnd
2 17 phi1
: 414 phi2
R 15 s0
‘-, 13 sl
2 11 s2
;:\ ’ 8 00
i 7 ol
5 o2

—end of sample-——---

Then create the simulation file (.sim) using sim. The extracted circuit is now
i ready for a static test with stat to determine ratio errors and power-ground
shorts and an actual sirnulation with esim.

/visi/lib/local /extr /extract
1A /visi/lib/local 7extr /toced
/visi/lib/local /extr /expand
/vlsi/lib/local /extr /bsort
/visi/lib/local /extr /bbound

ALSO
node-plot(cad1), sim(cad1)

PRl

el R o

¥
v

-
-
-

BUGS
Generates several .def flles which are not normally needed by the user.

-y T -
B A N g Sl il e Al e A de (L NaY R .\-_r._".‘a-“r_.-._r_“_-—".v'._vr-' Y T TR TV T ——r—— T p——— o ——

R
g '.’;.;"c.;':;'o

MERGE (CAD1) UNIX Programmer's Manual MERGE (CAD1)

oy merge — merge two or more cifout files
2% SYNOPSIS
e) merge < file! file2 file3 ... [-0 outfile]
% DESCRIPTION
Merge does a merge of sorted cifout flles or sorted and unsorted cifout files. The

input must be binary data and the output is binary data to the standard output.
If the -0 option is used, the output is sent to the stated file. This file cannot have

Y the same name as any of the input files.

FILES
/visi/lib/local /merge

iS SEE ALSD
: cifout(cad5), rsort(cad1)
£ BUGS

[
IS

Ky ;.a'..;:'f s
N f %

157

18

-
o @

KN
<
..]

e el T T -
PO W WA ot et - s

CH AN NAIP SML EE N PT re as eeda r rir a= airsa AR S st e Autt M Ste Shiet Sl An han et et e S ARTIN SEAie I LA db e S T A b An ot b 4

................

NODE-PLOT(CAD1) UNIX Programmer's Manual NODE-PLOT (CAD1)

NANE
node-plot — generate plot of extracted circuit
SYNOPSIS
! node-plot file
: Node-plot generates a plot of an extracted circuit. The plot is automatically bro-
ken into strips of 240 lambda width and has the node numbers that are associ-
: ated with the various node locations. The first part of the flle name is used for
. the input. For example, to plot an extracted circuit which has a .rec file labeled
: test.rec, enter node-plot fest and the terminal will indicate the necessary
response for the plot.

/vlsi/lib/local /extr /node-plot
/visi/lib/local /extr /bbound

SEE ALSO
extract(cadi)

The scale factor cannot be adjusted by the user. The stipple pattern is different
from the one used by the cl plot routine.

PLAGEN (CAD1) UNIX Programmer's Manual PLAGEN (CAD1!)

’ NAME
plagen — layout a PLA in CIF from an input-output specification

plagen [options] input pla.cif

DESCRIPTION
Plagen is a program that converts an input-output specification for a PLA into a
CIF representation of the PLA. The CIF representation uses the XEROX cell
library, and thus has a high probability of working. Since many people require
different inputs and outputs, plagen only generates the AND-OR plane with asso-
ciated pullups.

The options for plagen are:

-0 Do not include pullups on the OR plane. This allows you to take outputs
from the top of the OR plane.

~g# Set frequency of grounds to # The default is one ground per 32 product
. terms.

-4 The inputs are interleaved.
- The inputs are complemented.

To use plagen you must first create an input flle that specifies the inputs and
outputs of the PLA. The format of the input flle is:

. #-of_inputs, # of terms, # of outputs, symbol_§, lambda
b XXXXX YYY

¥ 5.4

10XX YYY
3 where #-of_inputs is the number of inputs to the PLA

#-of_terms is the number of terms in the PLA

fof_outputs is the number of outputs that the PLA has (If zero only the AND
plane will be generated)

symbol# is the number that the CIF symbol will have. This is how different PLA
cells can be distinguished. You must be careful when you select the symbol
number. For instance, the XEROX library consumes CIF numbers t to 99 and
other special cells developed at Stanford use the numbers 100 to 899. Since CLL
generates CIF symbols with numbers 1000 and greater, I suggest that you use
CIF symbol numbers in the range 900 to 999.

lambda should be the current value of lambda in micrometers. o

The actual programming information is encoded in #_of terms lines of input. .
Each term of the PLA has #_of_inputs characters that represent the input con- .3
nection information (the x's), a single space, and #_of outputs characters that

represent the connections to the outputs. For the inputs connections, there are
three possibilities:)

1) this term does not depend on this input: use a "'~ 4
2) this term is only true if the input is true: ""1"

3) this term is only true if the input is false: "'0"'

[N A e A

LA B s

b 159

PLAGEN (CAD1) UNIX Programmer's Manual PLAGEN (CAD1)

For the outputs there are only two possibilities:

1) this output is affected by this term: *'-"*

2) this output is not affected by this term: "'0"

For example, suppose we wish to create a 4 input, 3 output, 3 term PLA with
defining equations:

z1 = A'BC' + BC

Z2 = A'BC' + ABCD

23 = ABCD + BC

If we choose symbol number 901 and lambda of 2.5, then the input file is:

4,3,3,901,2.5
010- -0

The output of plagen is a CIF file, and a line of information about the PLA cell.
Plagen .ends to the terminal a line that is an external definition of the PLA for
use with CLL. Of course, you may need to alter the name of the CLL symbol that
corresponds to the PLA cell.

/visi/lib/local/plagen

SEE ALSO

cll(cadl),plague(cadl)

Not much error checking on the input format.

.........
'''''

\:,*.
PLAGUE(CAD1) UNIX Programmer's Manual PLAGUE(CAD1)
NAME

plague - PLA g(enerator) u(sing) e(quations)

S SYNOPSIS -

A plague <input | plagen >pla.cif

o DESCRIPTION

Y/ This is a program for producing a file suitable for the program "plagen" from

) logic equations. The flle fed to it should first contain a CIF number for the whole
symbol written "CIF# x;” (defaults to 900 if left out), then a list of input pins of
-~ the form "in<puts>: al a2 ...;" where "puts” is optional, a list of output pins

“out<puts>: ol o2..;", and a series of equations of the form "outpin =
inpini&inpin2'&x + etc’;”. The pin names can be any combinations of letters,
digits, ., and _, but must start with a letter. Logical inversion is expressed by a '
after the pin name. The logical AND operator is '&’, and the logical OR '+'. The
™ equations are assumed to be in sum of products form. The order of the names
' in the input and output lists determines where they are on the PLA.
' Spaces.tabs, and newlines are ignored in the equations, and they and the lists
" are terminated by semicolons.

The program does no minimization, but does ignore duplicate product terms.
The output for the plagen program comes out on the standard output. A
schematic version showing the pin names is put into pla.schem.

Example
Here is what the original input looks like:

CIF# 950;
outputs: S1 S2 S3 a4’ inc;
. in: random input signal RESET" s3 s@ si;
~ inc = randomé&input;
a4’ = s3 + signal + random&input;
o S3 = s2&s1 + RESET, S1 = signal + s1'&s2'&s3"; S2 = random&s3’ + s1;

Note that RESET" was used in true and inverted form.
o This is what goes to plagen:

o 7.8.5,950,2.5
AN 11-—— 000--
; -—-1-- 000-0
—~1-—- -00-0

e -—11 00-00
LT ---0— 00-00

o —-000 -0000
< 1-—-0-- 0-000
- -——-1 0-000

Here is pla.schem:

b CIF number 950
- AND plane

e 1----1- random

l--=—-input

~1--—- signal

—-0--- RFSET

PLAGUE (CAD1) UNIX Programmer's Manual PLAGUE (CAD:)

-1--00- s3
—1-0--s2
—1-0-1s1
OR plane
00-00-00 S1
000000 S2
000--000 S3
—00000 a4’
-0000000 inc

RIS RS -4 D :l

A "1" in the AND plane means that this term is true only if the input is true, a '0”
that this term is true only if the input is false, and a "-" is a don't care. In the
OR piane, a "-" means the output is affected by this term, and a "0" that it is
unaffected.

/vlsi/lib/local/plague
SEE ALSO
plagen(cadi)

BUGS
Limited to 40 input. 40 output and 150 product terms. Pin names are limited tc
14 characters.

RPN - SRBRPARE

1682

s L. o e e e R
re ala e 4 & a4 4 o .

P A A e e - ~—
. . e e A A A B e e Wy v
. R R LR e — L

RPLOT (CAD1) UNIX Programmer's Manual RPLOT({CAD!)

rplot — converts a scaled, sorted cifout file to raster format and plots it

SYNOPSIS

rplot [options].. file...

DESCRIPTION

FILES

Rplot takes rectangles as input and creates a raster file output. Input is on
standard input and output is to the Versatec plotter. The data must be sorted

by x-coordinate.

The processing can be modified by the following switches:

-5 Produce a banner at the beginning of the plot.

| Scale the output for 8.5 X 11 inch paper {document form).

-gz.y Plot a grid whose X interval is z lambda and whose y interval is ¥ lambda.
—i# Use a scale factor of # lambdas per inch.

-l Cause the named layer, L, to be omitted from the plot. The layer can be
one or moreof: c, d, g, i, m, p.

- Produce a report document plot with room for binding.

- Send output to standard output.

—x#1.42
Set the minimum x to be plotted as #7 lambda and the maximum as #2
lambda.

~y#1.42
Set the minimum y to be plotted as #7 lambda and the maximum as #2
lambda.

If no indications of the area to plot are given, rplot will scale the plot to best fit
the Versatec width (11 inches).

/vlsi/lib/local /rplot

SEE ALSO

BUGS

cifout(cad5), window(cad1), rsort{cadl)

Rplot does not use the standard queue for the Versatec, therefore, the plotter
must be free prior to initiating a plot. “Plotter busy" messages are generally
received if the plotter is off-line or busy.

163

s Do Bea e A a la Y a

=,

T TV V. YL W, LT T AL A e SOt I AR el b e Sl e - AN S A S Pk Sl fendl il ndSond Sl Ik SEad Al il Sadh Sl il S At
PSSt AU IR AT T I AR A all e AN Y PN A AL . M N P . . .

L e 8 & & 8

RSORT(CAD1) UNIX Programmer’'s Manual RSORT(CAD:) w

NANME .
rsort — sort cifout files
SYNOPSIS
rsort [infile] [-o outfile] [x] [y} [4]
DESCRIPTION
Rsort is a filter that sorts a cifout flle. Stdin and stdout are the default input
and output files. If the inflle flle name is specified, then the input is obtained
from that file. The -o option indicates that the following argument is the name
to be used for the output file.
The -x, ¥ and 4 options specify which fleld of the data to sort on: the X coordi-
nates, Y coordinat-s, or layer. The values are sorted into increasing order
(minimum value first). The default is to sort by X coordinate which is needed by
the rplot program. Only one option can be specified. Generally, the -y and 4
options are used to completely sort a file to compare it to another file. The sort
algorithm used is stable. Hence, two files that only differ because of line order-
ing will be identical after a full sort by layer, then Y, and then X coordinates. An .
example would be: ‘
rsort test.sco -1 | rsort -y | rsort -o test.sco. ;
FILES 1
/visi/lib/local /rsort)
SEE ALSO ;
cifout(cad5), rplot(cadl), window(cadl)

BUGS

WEPUING D S Y CHP L S

TNV T Y v T TNe T WY wvrwy v e, Ty T TR TEN TR TR e T e T W T L T e . v w W N
PRl S T AR A e S e St AeC Mac - S, B e R ANt I AR R SR AL A A A Rl R MR .
ACHACER NI IRC AR AL A A R A - RO I . P R R A . . .

o SIM (CAD1) UNIX Programmer's Manual SIM(CAD:)

B - NANKE
252 sim - create a sim file for simulation with STAT, ESIM, or TSIM
=t SYNOPSIS

\-'. sim file

- Sim produces a simulation file (.sim) to be used in circuit simulation with the
e - static checker (staf) or the event driven switch level simulator (esim). The
2N input file name must have .sym, .node, and .cap files associated with it. The .sym
_\'}: file must have vdd and gnd nodes defined as a minimum. For example, to gen-
{:’_ “ erate a .sim file for an extracted circuit with files of test.sym, test.node, and

test.cap, first define the vdd and gr.d nodes (as a minimum) in test.sym and then
enter sim test. The result will be test.sim.

20N /vlsi/lib/local /extr /sim
/visi/lib/local /extr /gatel

o SEE ALSO
i extract(cadl), stat(cad1), esim(cadl)
e BUGS

5
D
Y4

.
‘-

-

-

o 185

f.: STAT(CAD1) UNIX Programmer’s Manual STAT(CAD1)

[‘:\

;‘.:

‘.4 !lllm

" stat - the static checker

20 SYNOPSIS

- stat flle.sim [number][>file.stat)

X DESCRIPTION

Stat performs a static (dc) analysis of file.sim produced by eztract followed by
* sim. Number is the assumed number of threshold drops on the input pads. Itis

. an optional input parameter with a default of 0.

_\}, Stat attempts to understand how transistors and nodes are used in the circuit.

g It summarizes this understanding in its output files. Two outputs are generated
by stat. The standard error output (normally to the terminal) contains mainly
. counts of various items (node types, transistor types, etc.). The standard out-
put (also to the terminal unless re-directed with >file.stat) contains detailed
information about each potential error.

» STDERR SUMMARY
" (1) A report of the number of nodes and transistors in the circuit.
N This takes the form:
vy #aodes, fenhancement, #depletion, fintrinsic, #duplicates Y
'-,:‘_: Intrinsic transistors can be ignored since the current process does not]
¥ build them. A duplicate transistor is a single logical transistor laid out]
o physically as two or more transistors in parallel. :
(2) Transistor classifications:
[de] gate source drain .
. (d=depletion, e=enhancement) ;
dAAwdid simple pullup 1
dABvdd part of a superbuffer]
dABC ion-implant transistor
-~ eABC typical transistor
N e gnd A gnd lightning arrestor
L eABgnd pulldown
‘.;: e ABvdd unknown pullup
v (3) Input node count.
Any node N which contains a transistor of the form:
e e gnd N gnd where length=2, width>=40
" is considered to be an input node.
& (4) Bootstrap structure count.
. The following is an example of a bootstrap structure:
l:jiﬂ dABB bootstrap capacitor
:;f-- (5) Threshold drops on nodes.
‘L-' Starting with the given inpul threshold drops (with wvdd=0 and
! gnd=unknown), the information is propagated through transistors whose

e gate and source threshold drops are known, and drain unknown. Drain

STAT(CAD1)

. (6)

(7

(9)
(10)

(11)
(12)

(13)

UNIX Programmer's Manual STAT(CAD1?)

node threshold drops are then calculated according to one of the follow-
ing formulas:

depletion: drain=max(gate-3,source)
enhancement: drain=max(gate+1,source)

Pullup node count.

Pullup nodes are classified into simple pullups, unknown pullups, and
multiply pulled-up depending on the type of transistor{s) connected to
the particular node in question. In the following structures:

d ABvdd unknown depletion pullup transistor
e AB vdd unknown enhancement puliup transistor

node B is marked as an unknown pullup node until a function has been
found for it (such as part of a superbuffer). Unknown pullups are not
necessary errors.

Output node count.
Any node N which contains a transistor of the forms:

eBNvdd where length=2 or 3, width>=280 large pullup
or
e AN gnd where length=2 or 3, width>=280 large pulldown

is considered to be an output up or down ncde.

Pulldown transistor count.

A pulldown transistor is one that connects a strictly pulled-down node A
to another node B. If node B is not pulled-up, then it is also strictly
pulled-down, and can be used in finding other pulldown transistors.

Pass transistor count.

Logic gate count.
Where possible, logic gates are derived from transistor structures. Logic
gates are: inverters, nors, and complicated gates {nand, xor, etc.).

Superbufler count.

Ratio check and count.

All nodes that are simply pulled-up and connect to transistor gates are
checked for the proper pu/pd ratio. Pulldown transistors with non-zero
threshold drops on their gates are taken into account by making their
lengths longer. Ratios that are < 4 or >= 5 are reported. The program
cannot handle nodes with multiple simple pullups. When such a node is
encountered, the message: Program error in ratio is displayed.

Transistor error count.
Unknown depletion pullup transistors whose function cannot be deter-
mined are reported as: .

unknown pullup transistors.

Enhancement transistors whose gate is vdd or gnd, whose source is vdd
and drain gnd (or vice versa), whose source and drain are the same, or

167

......

P M A ARSI 24 AL A AR A LN MRS 160
: ‘:::‘
-::f_-f STAT(CAD1) UNIX Programmer’s Manual STAT(CAD1)
\‘:
o whose gate is the same as its source or drain are reported as:
(
NG strange transistors.
oo

*’3 Depletion pulldown transistors are reported as:

:‘3‘ depletion mode pulldowns.
';..f; (14) Node propagation error count.
:_:.;j Four bits are associated with each node: 0, 1, 1, O.
..o Ond has the 0 bit set.

e Vdd has the 1 bit set.

" All inputs have the I bit set.

- All outputs have the O bit set.

yg The program propagates these bits through the circuit. In the end,
AN nodes that do not have one or more of these bits set are counted and
.jj:., reported.
-y STDOUT MESSAGES

- Most messages describe either a node or a transistor.

b3y The standard format for a node message is:

21
350 message. node (Tpos,ypos)

e
A The standard format for a transistor message is:

message: [de] gate source drain (zpos,ypos)

l.‘

.

'j:{ In the case of a pu/pd ratio message, the format is slightly more complicated:
o rn (z.y) < x uw>: {<g [,.;?] dl x dw> mj+

.. The message says: pu/pd ratio 7 is calculated for node n at position (z,y). Node
oA n is pulled up with a pullup transistor of length wl and width of uw. Node n is
e pulled down to node m via a transistor whose gate is g, whose length is 4! and
- width is dw, and g has one of 5 possible threshold drops [..,;?] on it. One or
v more, {}+, pulldown transistors can exist in the pulldown path, the last of which

must have m=gnd (obviously).

The various threshold drops are denoted by:

::::j symbol drop effective pd resistance
N 1. . 0.0 x1.0

. 2 . 0.5 x1.5

: 3. : 1.0 x2.0
: 4, : 1.5 x2.5
,::- . 5. 2 unknown x infinity

ol Threshold drop changes the effective resistance of a pulldown transistor used in
3:,':;: ratio calculation.
oy FILES
. /visi/lib/lccal/extr/stat

2
VN

g

o 168
\..:;
k.ﬂ_w

34 P Pt ARG e, A it e i S AL A e e M O O A R . S e S i i et i A .~11

T STAT(CAD1) UNIX Programmer's Manual STAT(CAD!?)

SEE ALSO
extract(cad1),sim(cadl)

BUGS

N Only if you don't believe what the program tells you.

AN It is recommended that vdd, gnd, phil, and phi2 be defined in the file.sim before
N subjecting it to abuse by stat.

169

s Jrte B P A
~

)
.
-

e ala ela

PRI
A e W

Ha S R

g {

%0
Nl TN

TPLOT (CAD1) UNIX Programmer's Manual TPLOT (CAD1)

tplot — plots a cifout file on a GIGI terminal

tplot [options].. file...

Tplot is a program that can be run from a GIGI terminal. It will produce a coler
plot of a cifout file. The layers plotted and their respective colors and dot pat-
terns are

metal blue = ...
diffusion green e
polysilicon red e
implant yellow
contact magenta e
glass/DRC error white - — -
unknown cyan 2777

The processing can be modified by the following switches:
-if Use a scale factor of # lambdas per inch.

-nl Causes the named layer, !, to be omitted from the plot. The layer can be
one ormoreof:c, d, g, i, m. p.

-s§1. 42
Divides the chip into #2 strips and plots the #1th strip.

—x§1.42
Sets the minimum x to be plotted as #1 lambda and the maximum as #2
lambda.

-y#1.42 -
Sets the minimum y to be plotted as #1 lambda and the maximum as #2
lambda.

If no indications of area to plot are given, £plot will scale the plot to best fit the
terminal screen.

After the plot is complete, the terminal will go into the "position mode.” In this
mode, the terminal "arrow" keys can be used to move the graphics cursor to any
desired position on the screen. If the SHIFT key is held down in conjunclion with
an “"arrow" key, the cursor will move ten units at a time. Once the cursor has
been moved to the desired position, a 'p’ will cause the terminal to display the
cursor position in lambdas. A 'q’ will erase the screen and terminate the pro-
gram.

/visi/lib/local /tplot

SEE ALSO

cifout(cads)

170

.......................

-‘.,."p KRS

AL R SLIRITY -

AP Ao il o I e S A et v 2 o el D it e it e e ASet St At St S g St St no it Autiiiuds DRI S), |
e s L [N SR Lot et et RN R L -

.
- UNCONVERT (CAD1) UNIX Programmer's Manual UNCONVERT (CAD1)
)

oo NANE
. .)-,.: ; unconvert — converts an ASCI] cifout file to binary form
[SYNGPSIS
rY unconvert < file
. DESCRIPTION
-~ Unconwert takes an ASCII cifout fille from standard input and converts it to a
28 binary format sent to standard output.
¥ FILES
3 /visi/lib/local /unconvert
’ ALSO
cifout(cadS), convert(cadl)

\
) .
or W)

X%

BUGS

IR

ool 2
N

l,‘ !'4 -t -

SRR

N

o

A ’.-L iy
'A“ 4 l"’L

.

;.;5 J ¢ S

R 1]
%)

at
o ‘.
KRN T

Py

rxzr |

S

N 171

» T AT " 6N T AT AT AT A e 4T a e T e S U I T SR D . . ., ., . . . S . B “ e D
R g Ny Y N N e e e e e S e et e e

5 4 RS

WINDOW (CAD1) UNIX Programmer's Manual WINDOW (CAD!)

e e 4
e o

NANME
window window a cifout flle

‘ SYNOPSIS
- window [-x#1.#2] [-y#1.4#2] [-1#] [-sn.m] [-n!]
) DESCRIPTION
. Mindow is a fllter that converts a cifout file to raster coordinates preparatory to
conversion to raster format. Window can convert any selected portion of the IC
and also scale the resulting plot. The processing can be modified by the follow-
ing switches:
x#1.42
set the minimum x to be plotted as #1, max x as #2 (in lambdas, either
#1 or #2 can be omitted)

el N
ﬁ .‘.)
N
- L
L

y#1.42
get minimum y as #1, maximum y as #2 (either #1 or #2 can be omitted) 1
44 sets scale factor to # lambdas per inch g
-sn.m plots strip n of m strips. This allows convenient plotting of IC's that are 3
too large to fit onto a page. Note that n ranges from 1 to m. Strip 1 is a
the first strip (lower left corner), strip 2 the second, etc.
1

-nl causes the named layer, !, to be omitted from the plot. The layer, {, may
be one or more of ¢,d.g.i,m,p or z.

e) Blockout. Causes the min to max x (and y) to be blocked out rather than
plotted. Creates a baox on the Z layer to show where the block was.
Automatically sets the -u option. Note, the output file may be unsorted
even if the input file was sorted.

a Unscaled. Causes the output coordinates to be unscaled to raster coor-)
dinates. This allows a file to be windowed more than once without the]
coordinates getting scaled to fit the Varian every time.]

4 Causes the object to be windowed to the size of 2 normal page for docu-
mentation (suppresses printing of comments). Will make the 10.5 inch
dimension in either the x direction or the y direction to get the biggest
possible plot.

r Causes the object to be windowed to the size of a bound page so that it
may be bound (also suppresses printing of comments).

-gz.y Allows you to specify a grid to be displayed on the plot. This inserts
appropriate instructions into the cifout file to cause rplot to plot grid
lines at a spacing of z lambda in the x direction and y lambda in the y
direction. If z or ¥ are omitted a default value of 5 lambda is used. Ilf no
arguments are specified, window will use the bounding box for min/max
x/y and scale the plot to best fit the paper. The user can specify any
subset of parameters that he wishes, and window will use the given infor-
mation in conjunction with the information in the cifout file to determine
the desired operation. For example, the command
window -x.53
would use the bounding box information to determine xmin, ymin and
ymax, but xmax would be set to 53 lambda.

T § SRR I

FILES
/vlsi/lib/local /window

~ _‘i,"i‘,

.

T

Dbl g aai il AaSie M

WINDOW (CAD1)

v
=
:
ap
!
o)
<t
g
B,
3
ael
i 5
-
p.’ ..M
b — o
. o
. 3
. : :
: =]
. n
{ T m
o o
v.. M m
" = 3
s i ¥ T
& 9 5
: A 5 -
) 5 B g
§ 5 = ¢
; g <
3}
... /n.u\ [
B e o
R
b*, 'Y .M
4 < 8
h* ﬁ 3
2 ~ o m
h? ~ A Q
: g g 3
N = w ° 2
y
w-. w m m
).
'A
+
i (]

‘n'!l -1 I."il @ S Il"'”lﬂﬂ’I(\.d 3 I g 4% % o L R A R ¥ [a8 a * 2
© N f ol -...s . iv Y 3, 54 AP ..~..I\T\.T_.. ROLF * . SRR T . l -...-.
m 4 .A‘\f-f-.u.- . !qo.\\x /M..oh. .h'.‘..,.-' X . L e . -u’- piwn

4 2, W)V'}
‘2 AN
‘) LT)’)l
RS
v -if»/}’ ‘f‘f»r;,/ ”,
Sain 7%

S L2070
L] o PRl
bl y : %

§ S ,;z:"affﬁ»”

A~ . /f A5 AR
v u)u s
‘{)
75
'/I),‘)w/‘

i
<7

FIGURE 1 — CLL/RPLOT STIPPLE PATTERN

174

3

—— ey - ———— T WL N W - e, e e ey e Tl
- S o - WL N ML M i M A S Sasd, ol Ied Jhdhf IR A A
PLERERE S AR A NG AR AEASALMVERTMER A NSNS S Sl A i RN

. [y

. -
T

LR Rt Y

A

o~

...,
DR AN
AT

()

« el w

3

—~——
Amn'ma e ol Baca 2 S M K. . L

U

s

Byely oy ¢

L’:l‘:’l.{\' LML
contact
glass
implant
melal
poly

o contfact

::i \\&*
ad AN
& N N
N glass
. implant :
~ i
iy metal !
X ‘ Ha
AN R S N
‘. -
N
"
-
o
3 FIGURE 2 — NODE-PLOT STIPPLE PATTERN
>. ;
-., A
o o
. -q
. 175
4 :1
o :

APPENDIX C

SUMMARY OF CLL COMMANDS'

COMMENTS

enclosed in /* */ ; commands do NOT nest.

SYMBOL DEFINITION

name [(cif# bounds lix,lly xlen,ylen)]

EXTERNAL

external name (cif# bounds lx 1y xlen,ylen)

LAYER
layer,
(metal, blue, red, diftusion, diff, green,
contact, cut, black, implant, yellow, glass,

metal2, poly2)

RECTANGLE
rect lix,lly xlen,ylen [layer];
or

r lix,\ly xlen,ylen [layer],

via llx,lly [layer)

(poly or diffusion)

WIRE

Excerpt from Reference 5.

176

LMt Beudt Sh a2 Jhul Aat-uiame o) Al a8 aral e Pp—p L .
..... A e A R A A SR A N A O S A A M M A IR el T S A A i i A i i A g A

wire [layer] x,y wirelist;

or

w [layer] x,y wirelist;

(wirelist consists of one or more of:

ug df rilf wh x4 y# #4 layer)

CALL

name(llx lly transformations);
ITERATE

iterate nx,ny [xpiteh,ypitch]

name(llx,lly transformations);
TRANSFORMATIONS

flip ud, flip Ir, fip rl

rotate 0, rotate 3, rotate 8, rotate 9, rotate 12
FUNCTIONS

dx(name) dy (name) pwidth(#ma) print (ezpr)

At atmlia’alea " alealataa aat e

.....

DEFINES
#define symbol-name real-value
INCLUDES
finclude "file-name"
CONDITIONAL
#ifdet z
#endif
or
fifndef
#endif
CLL RESERVED WORDS
black blue bounds
cif contact cut
default diff diffusion
dy external flip
green implant iterate
Ir metal metal2
poly?2 print pwidth
rect red rl
u ud via
wire X y
STANDARD FILE STRUCTURE
178

ERta i 4

butt

d

dx
glass

1

poly

r
rotate

w

yellow

T T YR TTTOTTR T Q) AR S id el i i T B -1 a/C At it S TN W T T o

A Il e S A b S S AT i o "2 gy g T T

L A P R S St Bath e S St i R e i Il - = pdiate
- L I e T N N N T R e A i

#ifndef MYNAME

#define HYNAME

#include " fuilsi/lib /local /s_ext.cll”

finclude ng "

: #include "b"
external name(cit# bounds lix,lly xlen,ylen)
fidefine z 1

::1 #define y (ay+3)

fdefinez 7.5

symbol-name()
{

PN A
S

l" o

Y
e
-
AL .

APPENDIX D

DESIGN FABRICATION

The following sections provide an overview of the procedure for using the

DARPA Net to deliver a CIF file to MOSIS (Chapter 2 of this thesis) for fabrication.

A INTRODUCTION TO THE DARPA NET

The DARPA Net is the computer link between the designer and MOSIS, where
the CIF flle is verified and forwarded for fabrication. Access to this net is con-
trolled and will not be covered by this Appendix; however, once access has been
obtained, the following material will be a guide to the user.

At present, the NPS VAX computer is not capable of linking to the DARPA Net.
Until this connection is available, the user must use a remote terminal with
modem capability. The phone numbers for the Net link are:

6468-3150 ESOO BAUD)
646-3158 1200 BAUD)

Both are full duplex operation. After a link has been made, the DARPA Net can
be established by pressing the terminal’s CONTROL and Q keys simultaneously
(<CTRL>Q). The terminal responds when the net has been opened and waits for
the user to open a host computer tie.

Although there are several host computers capable of accessing the DARPA
Net, the two most frequently used at NPS are ECLB and ISIE. To open the con-

nection with ECLB, the user should type

@0 23<CR>

where <CR> is RETURN. To open the connection with ISIE, type

180

s el R

sl b St M < o Tt oy Tee) b B S) TrrerLr ."'_W_‘I_"i.‘__"_".'a".-"' Uil At v et jiart el SRR ol Dl el i ALl S -
-, L R i R T e e e e LI R - . - L - - - - v - °

s
3
“ G0 1/52<CR> :
b - L
(. . [
b Y . o
zﬁj In either case, the net responds to the open connection with information about X
;_: the net and then issues the system prompt <
SN ,
;
-] !
" 1. Login/lagout
\‘.
' The command to log onto the net is
o
:_:% * login user-nome password<CR>
N
The computer responds with information about the account and then issues the
j:} system prompt again. The system now accepts valid commands.
A
';:f Since the DARPA Net is a shared net, the response of the computer is gen-
i erally slow. Be patient and don't attempt to confuse the computer with several
.-iij _ commands while it is attempting to execute one. If at any time it appears that ’
:::’i the link has been lost or the system is "locked-up,” simply terminate the modem
< connection. The net closes che connection after a set amount of "idle time "
N To properly log off of the link, type y
(U
- logout<CR>
::: The system responds with a message confirming that it is closing the connec-
‘ tion.
» 2. Help
- To obtain a list of valid commands, type
=
o <CR>
’.1
- 181 :
K

gl

+ T

ey .

»
Nt
"'.

P A .
A S S D SN TV g A

o, -4,

T
]
PP S ey

a
% e

. AT
[WL WL ARS

o o4

MO O
!_.' _“ ." -‘l ‘~ ." -

SERRRRRE

e

P At AN Ak s e AN § Ny A0 IS At LSS e eI S, At R

The net also has a HELP function which provides information and usage for par-

ticular commands. To find out what comrands are supported by HELP, type
help 2<CR>

The command
help name

gives information about the systemm command, name. The two commands that
will be used most by the VLSI designer are MSG and SNDMSG.

3. MSG
The manual for MSG can be obtained with the command

help msg

(This is a long file and should be printed for user reference.) MSG will be used to
read and send mail (messages or letters) within the DARPA Net and especially to

MOSIS.

To determine if there is any mail that has not been examined, type

msg

The computer responds by indicating if any mail is stored and will give the mes-

sage n.mber and origin. It will terminate with the MSG prompt of
(-
To read a message, type

t number

182

S dumin o8

R

o

where numaber is the message number (or range of numbers). For example, t 52
causes message 52 to be displayed, while t 52-80 causes messages 52 through 60
to be displayed consecutively.

To send a message while in the MSG function, type

The computer responds with

To (? for help):

The address of the the user to receive the message should now be entered. For

example,

MOSIS8@USCHSIF k

Note that two "@" keys must be typed, while the terminal will type three of
them. After a RETURN, the system responds with

cc (? for help): a

This is a request for the address of a user who is to get a copy of the message. It

is recommended that the designer put his address to get a copy of the transmit-

ted message. After entering this address, the computer responds with

Subject:

The user then enters the subject of the message. The next input requested by

35 ;r;.uﬁ’ X

the computer is

Message (? for help):

= e

il

The text of the message can now be typed. While entering the message text,

various editor commands are available. The commands are listed in the SNDMSG

manual but the most commonly used ones are:

<CTRL>D Retype text
<CTRL>H Delete last character
<CTRL>U Delete present line
<CTRL>Z End of message text
<CTRL>N Abort this message

After the message has been entered and the user has indicated that the
end of the text has been reached (with <CTRL>Z), The computer will ask if the

message should be sent (S) or placed in memory (Q). If the user responds with

the message will be sent after the addresses have been confirmed.

Any additional information on the DARPA Net should be obtained from the
HELP function.

B. MOSIS

MOSIS is the link between the designer and the fabrication facilities. It pro-
vides information on the current schedule for the technologies that are being
fabricated and also information concerning updates to these technologies
(nMOS, cMOS, etc.). Although the MOS/S USER'S MANUAL [Ret. 8] provides a
complete list of procedures for the fabrication process, this Appendix highlights
the major points.

1. Ohtaining Infarmation

Since MOSIS has an automatic message processing system, all correspon-

dence to it must be in standard format and identified with valid subject and

request lines. The format of the text for messages to MOSIS is:

REQUEST: Type-of-Request
Parameter line

REQUEST: END

The allowed entries for the REQUEST and Parameter lines are given in the User's
Manual. To obtain this manual (along with other basic information), the follow-

ing message should be sent:

TO: MOSIS@€USC-ISIF
CC: User-Address
SUBJECT: INFORMATION REQUEST
REQUEST: INFORMATION
TOPIC: USER-MANUAL
TOPIC: GENERAL

TOPIC: TOPICS
REQUEST: END

The GENERAL topic provides information on how to obtain authorization to use

MOSIS and the TOPICS topic gives information on other topics relating to the

MOSIS service.

The turn-around time for a request to MOSIS is generally less than one
hour during working hours. Once these basic information sources have been
received, the user will be able to request information on other areas (library,
schedule, etc.).

2. Required Messages

Once authorization has been obtained to use the MOSIS service, the

designer needs to initiate several messages in order to get a chip fabricated. All

of these messages are documented in the MOSIS USER'S MANUAL. However,

the messages that are absolutely required are requests for NEW PROJECT,

ok A

a_ 4 P
s
ANCRE

-

e

TS MAN)

AN

'
A

ATV OND:

7

_}.{ -

>

S M

- e #

A, L ¥

..........................

FABRICATE, and REPORT.
The NEW-PROJECT request has the form:

REQUEST: NEW-PROJECT

D-NAME: name of designer)
AFFILIATION: Navy)
ACCOUNT: MOSIS account number)*
D-PASSWORD: gdesigner's password)
NET-ADDRESS: designer's net address)
MAILING-ADDRESS: (designer's mailing address)
P-NAME: Eproject’s name)
P-PASSWORD: project's password)
DESCRIPTION: (short description of project)
TECHNOLOGY: snMOS. ¢MOS, etc.)
LAMBDA: requested lambda)
MIN-LAMBDA: min accepted)
MAX-LAMBDA: max accepted)
PADS: number of pads)

REQUEST: END

* Assigned by MOSIS after authorization has been granted.

MOSIS replies to this message with an approval (or disapproval) message which
gives a project number.
The FABRICATE message can be used both to submit a CIF file and request

that it be fabricated. It has the form:

REQUEST: FABRICATE

ID: project # assigned by MOSIS)
P-PASSWORD: project password)

SIZE: (length X width of project in microns)
CIF:

(insert final.cif here)
REQUEST: END

This is the minimum requirement for the message. Other information can be
added if the designer feels that it is necessary. For example, the lambda used
to calculate SIZE may be included. Additionally, if a check-sum was performed
on the CIF flle (See the following section.), it should be included in this message.

MOSIS responds to this message with a "valid CIF" (or "not valid CIF") message.

188

NN PRI P AR O

RIS~

.,..
.‘IA“'.

AT AR L SN A N AN " BN N AR AR A A LI L\ LRl A R N A A A A R 1
2 ;
o]
i !
>
B If the "not valid CIF" message is received, the designer must retransmit his j
:.: . FABRICATE message.
N
;‘] The REPORT message should be sent after the chip has been received and
£\
= tested. This provides feedback to MOSIS for their analysis of the fabrication of
f',-'. different technologies. It has the form:
“y
%
W REQUEST: REPORT
1D: (project number)
) P-PASSWORD: project password)
REPORT: report of performance of
: fabricated project)
B REQUEST: END
. 3. Cksum
S
XN MOSIS provides the software for performing a "check-surn” on a CIF file
Ey
= which is used to validate that flle. Check-sum gives an output which is a unique
v count of the input CIF file that can be used to verify correct transmission of the
':;* file over a data link. This software has been installed on the VAX and should be
xS used by the designer. If the command
n'
L cksum final.cift
; is issued, the computer responds with
54 CIF-CHECKSUM= number!
3y BYTE-COUNT= number2
]
The check-sum can be included in the FABRICATE request, while the byte~count
.5 is for the designer's information only. Upon receipt of the CIF file, MOSIS com-
, :g . putes a checksum and reports its value in the “vi lid CIF" message. The designer
f. should verify that this check-sum is identical to number!.
o
J

3
o
,

b 187

shrd Fadl vl St Yl el uie it ShAMIP LA B AV AL S M= D R e S S S 2 S S S
cw e iw e e . P e N~ TN e . ~ . . - L LA St c T

APPENDIX E
FILES AND PROGRAMS FOR THESIS FROJECT

RS- § I

-
. K
., g
. .
. <
- -
., L
-,
A

J

'

LI |
o el

S

L
a
LI .

4
Pk et

..........

................
..........................

....................

plai

CIF# 950;

in: AO BO A1 B1 A2 B2 A3 B3 A4 B4 A5 BS A6 B6 A7 B7 A8 BB A9 B9 A10 B10 Al1;
in: B11 A12 Bi2 A13 B13 A14 B14 A15 B15 CIN;
out: G140 G130 G120 G110 G100 G90 GB0O G70 G60 G50 G40 G30 G20 G10 GO0 P150;
out: P140 P130 P120 P110 P100 P20 P80 P70 P60 P50 P40 P30 P20 P10 P00 G21,
out: G11 GO1 P21 P11 PO1 COUT;
G140=A14&B14;

G130=A13&B13;

G120=A12&4B12;

G110=A11&B11;

G100=A10&B10;

G90 =A9&B9;

GB0 =AB&BB;

G70 =A7&B7;

G680 =A6&BS;

G50 =A5&BS;

G40 =A4&B4;

G30 =A3&B3,

G20 =AR&B2;

G10 =A1&B1;

GO0 =A0&BO0;

P150=A15'&B15+A15&B15’;
P140=A14'&B14+A14&B14';
P130=A13'&B13+A13&B13';
P120=A12'&B12+A12&B12';
P110=A11'&B11+A11&B11';
P100=A10'&B10+A10&B10";

P90 =A9' &B9+A9&B9";

P80 =AB'&B8+AB&BB';

P70 =A7 &B7+A7&B7’;

P80 =A6'&B8+AB&B6';

P50 =A5' &B5+A5&B5';

P40 =A4'&B4+A4&B4';

P30 =A3' &B3+A3&B3';

P20 =A2'&B2+A2&B2";

P10 =A1'&B1+A1&B1’;

P00 =A0’'&B0+A0&B0";

PLA1 EQUATIONS CONTINUED ON NEXT PAGE

189

......

'l{l,_:,- E ‘..

Ry oy

v
te "0 Ty

1 ; G21=A11&B11+A10&B10&A11'&B11+A10&B10&A11&B11'+A9&BO&A10'&B10&A1 1&B11’ -

. +A9&BO&A10&B10'&A11&B1 1'+A9&BO&A10'#B10&A11'&B11+A9&BO&A10&B10’)

S &A11'&B11+AB&BBXAQ' #BO&A10'&B10&A11&B11’' +AB&BB&AY' &B9&A10&B10’ ;

- &A11&B11'+AB&BB&AS' &B9&A10'&B10&A11'&B11+AB&BB&AY &BI&A10&B10"

- &A11'&B11+AB&BB&AQ&BY &A10'&B10&A11&B11' +AB&BB&A9&BY' &A10&B10’

- &A1 1&BB1 1'+AB&BB&ASXBY' &A10'&B10&A11'&B11 +AB&BB&AXBY &A10&B10’

- &A11'&B11;

, G11=A7&B7+AB&BB&A7 &B7+A6&BBXAT&B7' +AS&BS5&A6' & B6&A7&B7 +AS&B5&A6&B6"

&A7&B7 +AS&B5&A6' &BE&A 7 &B7+AS&B5&AG&B6’ &A7' &B7+A4&B4&AS &BS&A6'

- &BB&A7&B7' +A4&B4&AS ¥ BS&AS&B6' XAT&B7' +A4&B4&AS &B5&AB' &BB&AT'

~ &B7+A4&B4&AS' &B5SXABLB6' &A7' &B7+A4&B4XAS&B5 A6 &B6&AT&BT +A4

&B4&AS&B5' ¥AB&BS' &A7&B7' +A4&BA&ASKB5 &A6' ¥ BE& AT &B7+A4&B4&AS&B5’

T &AB&B6' &A7' &B7;

. GO1=A3&B3+A2&B2&A3 &B3+A2&B2&A3& B3’ +A1 &B1&A2' &B2&A3&B3 +A1&B1 &A2&B2" =

&A3&B3 +A1&B1&A2' &B2&A3 &B3+A1&B1&AZ&B2 A3 &B3+A0&BO&A 1 &B1&A2' "

2 &B2&A3%B3' +A0&BO&A1'&B1&A2&B2' #A3& B3’ +A0&BO&A 1 &B1&A2' ¥B2&A3 &B3+ ;

AO&BO&A1'&B1&A2&B2 &A% &B3+A0&BO&A 1&B1' &A2' & B2&A3&B3 +A0&BO&A 1

- &B1' &A2&B2' &A3XB3' +A0&BOXA 1 &B1'&A2' &B2&AS' &B3+A0&BO&A1&B1' &A2

e &B2'&A3'&B3;

P21=AB &BB&A9'&BO&A10&B10'%A11&B11' +AB&BB &AY &BO&A 1 0&B10'&A11&B11 +AB’
&BB&A9&BY' ¥A10&B10'&A11&B11' +AB&BB' ¥A9&BY' A10&B10'&A11&B11' +

2 AB'&BB&A9' &BI&A10'%B10&A11&B11'+AB&BB' A9’ &BO9&A10'&B10&A11&B11’

- +AB' & B8&AOKBY &A10'%B10&A11&B11'+AB&BB' ¥ AO&B9' &A10'&B10&A11&B11"

+AB'&BB&AY' ¥BO&A 10&B10' &A11'&B11+AB&B8 A9’ ¥ BOXA10&B10'&A1 1'&

-
B

P- - P,

o B11+AB'&BB&A9&B9'%A10&B10'&A11'&B11+AB&BB’' &A9&B9' &A1 0&B10'&A1 1"

N &B11+AB'&BB&XA9'¥BO&A10'&B10&A11°'&B11+AB&BB'&A9'&B9&A10'&B10&A11"
&B11+AB'&BB&AS&BI'&A10'&B10&A11'&B11+AB&BB'&A9&B9'&A10'&B10&A11"
&B11;

P11=A4'&B4&A5 &B5&A6&B6'&AT&B7’ +A4&B4' &AS5' &BS&A6&B6' ¥AT&B7' +A4'&B4&AS&
B5'&A6&B6'&A7&B7' +A4&B4'¥AS&B5' &AG&B6' &AT&B7' +A4’ &B1&A5 &B5& A6’
. &BBXAT&B7' +A4&B4' &AL &Bo&AB' &BO6&AT&B7 +A4’' &4 B4&AS&B5 &A6' &BE&AT

- &B7' +A4&B4'&AS&BS A6 & BO&AT&B7' +A4' &B4& A5 &B5&AB&B6’ &A7 &B7 +

A A4&B4'&AS &BS&A6&B6' &A7' &B7+A4' &¥B4&AS&B5 &AB&B6 &A7 &B7+A4&B4’
&AS&B5 &AB&B6 &A7' &B7+A4'&B4&AS &B5&AG & BE&AT &B7+A4&B4'&AS &BS

o &AB ' &BE&AT &B7+A4'&B4&AS&BY & A6'&B6&AT &B7+A4&B4 &AS&BS &AB &

N B6&A7 &B7,

PO1=A0'&BO&A1'&B1&AR&B2 ' &A3&E3 +AO&BO &A1'&B1&AR&B2' #A3&B3' ~AQ0' &BO&A1&

- B1'&AR&BR2'&A3&B3' +AO&BO ' &A1&B1'&AR&KBR #A3& B3 + A0 &BO&A L &B1&A2’

> &B2&A3&B3' +A0&BO'&A1'&«B1%42'&B2&A3&B3’ +A0' &BO&A1&B1 &A2'&B2&A3

&B3'+A0&B0'&A1&B1'&A2'&B&A3&B3’ +A0' &BO&A 1 &B1&AR&B2 &A3'&B3 +

AO&BO &A1'&B1&ARXBR' &A3' &B3+A0' &BO&A1&B1 '&A2&B2'&A3' &B3+A0&B0’

. &A1&B1'&AR&B2'&A3' &B3+A0' &B0&A1'&B1&A2' &B2&A3' &B3+A0&BO' &ALl'&

N B1&AR' &B2&A3'&B3+A0'&BO&A I &B1 AR &B2&A3 ' &B3+A0&B0 &A1 &B1'&AR

- &B2&A3'&B3;

couT=CIN;

A P~ SRR §1 SCICRA R CURR e e

.,
ERPRRENI wif U I

= .

1

.

.

«

‘

J

- -
* ‘]

. 190

/ '1
1
{

DA ol e P ot e e

pla2

CIF# 951;

3 in: G140 G130 G120 G110 G100 G90 GBO G70 GBO G50 G40 G30 G0 G10 GOO;

1 in: P150 P140 P130 P120 P110 P100 P90 PBO P70 P60 P50 P40 P30 P20 P10;

n in: P00 G21 G11 GO1 P21 P11 P01 CIN;

- : out: OP15 OP14 OP13 OP12 OP11 OP10 OP9 OP8 OP7 OP6 OP5 OP4 OP3 OP2 OP1;

c out: OP0 0G14 0G13 0G12 OG11 OG10 OG9 0GB OG7 0G6 OG5 0G4 0G3 0G2 0G!;
o out: 0G0 C11 C7 C3 COUT;
s C3=G01+CIN&PO1;
- C7=G11+G01&P11+CIN&P01&P11;
C11=GR1+G11&P21+G01&P11&P21+CIN&P01&P11&P21;
0G0=G00;
0G1=G10;

“ 0G2=G20;

N 0G3=G30;
0G4=G40;
0G5=G50;
0G6=G60;
0G7=G70;
0G8=G80;
0G9=G90;
0G10=G100;
0G11=G110;
0G12=G120;
0G13=G130;
0G14=G140;
OP0O=P00O: '
> OP1=P10;
S OP2=P20;
~ OP3=P30;
OP4=P40;
OP5=P50;
- OP8=P60;
OP7=P70;
0P8=P80;
OP9=P90:;
OP10=P100;
OP11=P110;
- OP12=P120;
- OP13=P130;
- OP14=P140;
OP15=P150;
~ COUT=CIN;

191

L - AP W Y .

AD-A136 356 YLSI (VERY LARGE SCALE INTEGRATED> DESIGN OF A 1é‘§f7 . 3/3
YERY FAST PIPELINED CARRY LOOK AHEAD ADDER(U) NAYAL
POSTGRADUATE SCHOOL MONTEREY CR J R CONRADI ET AL.

83

UNCLASSIFIED SEFP F/G 9/5

: NL

n AT s " S T T o I Dol A ' . AN IS A e Pig ™A P BV SRR T R R A RCRAL IR A 55 QRS 10 s - PRatiAn S Rn fn S0A,, ‘s 4

1

FEEFEEE

EEEE
3

TR
= 1.8

B |
i

B -

==
=
-
B

.f MICROCOPY RESOLUTION TEST CHART
h NATIONAL BUREAU OF STANDARDS-1963-A

B N LS e T e e o T

i
§

s

- 7,4“

g2 2 Ll A

~
o

W
x
::Ea_

W6

& %
2 N

5

pla3

CIF# 952,
in: P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 PO;
in: G14G13 G12 G11 G10 G9 GB G7 GB G5 G4 G3 G2 G1 GO C11 C7 C3 CIN;
out: COUT OCO 0C1 0C2 OC3 0C4 OC5 0C8 OC7 OC8 OC9 OC10 OC11 OC12 OC13;
out: 0C14 OPO OP1 OP2 OP3 OP4 OPS OP6 OP7 OP8 OP9 OP10 OP11 OP12;
out: OP13 OP14 OP15;
COUT=CIN;
0C0=GO+CIN&PO;
0C1=G1+G0&P1+CIN&PO&P1;
=G2+G1&P2+GO&P1&P2+CINXPO&P1&P2;
0C3=C3;
0C4=G4+C3&P4;
0C5=G5+G4&P5+C3&P4&P5;
0C8=G8+G5&P8+G4&P5&P8+C3&P4&P5&PS;
=C7;
0CB8=GB+C7&P8;
0C9=Go+GB&P9+C7&PB&PS;
0C10=G10+G9&P10+G8&PO&P10+C7&P8&P9&P10;
0C11=C11;
0C12=G12+C11&P12;
0C13=G13+G12&P13+C11&P12&P13;
8&1’4;(3144-& 3&P14+G12&P13&P14+C11&P12&P13&P14;

\

‘OP1=P1;

OP2=P2;
OP3=P3,;
OP4=P4;
OP5=P5;
OP8=P8;
OP7=P7,
OPB=P8,;
OP9=PS9;
OP10=P10;
OP11=P11;
0P12=P12;
OP13=P13;
OP14=P14;
OP15=P15;

baRupt s o vl Al WS, > LA i BRI i A s - po) AL At a N Al T Al el Al et SRl S ’ LR YN 44 |

RY.¢ . -~ LSS St Ao D o P e o G LA B ok B A A S B DA i 5t DR S B e ——
3

‘ plad
.
3 CIF$ 953,
4 in: P15 P14 P13 P12 P11 P10 P09 P08 P07 P08 P05 P04 P03 P02 P01 P0O;

in: C14 C13 C12 C11 C10 C09 C08 CO7 CO6 COS5 CO4 CO3 CO2 CO1 COO CIN;
. out: SO S1 S2 S3 S4 S5 S8 S? 58 S8 510 S11 S12 S13 S14 S15;

\ S0=CIN'&P00+CIN&P0O0";
2 S1=C00'&P01+C00&PO1";
3 S2=C01'&P02+C01&P02';
5 S3=C02"&P03+C02&P03";
3 S4=C03'&P04+C03&P04";
S5=C04'&P05+C04&P05';

S8=C05'&P06+C0O5&%P06";

S7=C06' &P07+C0B&P07';
e S8=C07'&P08+C07&P08';
S9=C08' &P00+C0B&P09";
“’§ S10=C09'&P10+CO9&P10;
E S11=C10'&P11+C10&P11";

S12=C11'&P12+C11&P12';

S13=C1 2’&?13-1-012&?13':
S14=C13'&P14+C13&P14’;
S15=C14'&P15+C14&P15';

R e

HL T

DR

“ oy
o

183

N
PN T o e

A

SR E P 5T

!

WA L) .,
o o o L A

ODIORdIN—

stagel.cll

/* include cell library */

include " /visi/lib/iocal/s.sxt.cll”

/% define plal cif file®/

external plai(cit 850 bounds —-15,0 868,1151)
/*place plal */

stagel

pla1(0,123);
iterate 33,1
Afterburner(16,58);
iterate 33,1
PlaClockin(15.0);
iterate 19,1
PlaClockOut (558,70);

194

3R kY B AT At At AV AV R et gt WL T .

o o m e e e

.

|
3
i
i
%
|
|

stage2.cll

/*include cell library */

include " /visi/lib/local/s.ext.cll”

/% define pla2 cif file */

external pla2(cif 951 bounds —15,0 924,352)
/° place pla 2¢/

stage2()

§
pla2(0,15);
iterate 18,1

PlaPullup (638,4 rotate 9);
fterate 38,1

Afterburner (10,381 rotate 8);
iterate 38,1

PlaClockln (11,428 rotate 8);
iterate 18,1
; PlaClockOut (638,359 rotate 8);

186

- P
R AN S)
‘ 1

KAZ S ». W ' n “ \ '\ ll.h f.‘.f.‘ ’_;" .

stage3d.cll

/° include cell library */
include " /visi/lib/local/s_ext.cll’
/* define pla3 cif file */
external pla3(cif 962 bounds —15,0 852,464)
/,° p%; pla3 ¢/
stag
pla3(0,123);
fterate 35,1
Afterburner(16,58);
iterate 35,1
PlaClockin (15,0):
iterate 16,1
PlaClockOut (590,579 rotate 6);
iterate 16,1 ,
; PlaPullup (590,112 rotate 9);

108

- -~ . “ . -« - . - » - - - < e " q R) * - - - - -,
TS L A S A A S SRS L S TR G AR

.
AN

PRI

L R
et .

stage4.cll

. /* include cell library ¢/

include " /visi/lib/local/s.ext.cll”

/% define pla4 cif file */

external plas(cif 953 bounds —15,0 876,264)
. /* place pla4 */

stage4()

pla4(0,117 rotate 6);
iterate 32,1
Afterburner(154,58);
iterate 32,1
PlaClockin(153,0);
iterate 8,1
PlaClockOut(8,377 rotate 6);
iterate B,1
PlaPullup (8,110 rotate 9);

107

LI AR R, e Mt e
N P v f.‘ ™, f\-\ﬁ " Vz-\x-- . \:.7 -:,.. RN

|

stageS.cil

/° this stage will develope the input-output pads */°
/* and will be combined with stages 1 thru4 ¢/

/° include cell library ¢/
include “/visi/lib/local/s_ext.cll"

/°* place input/output pads */
stag

/° lower edge pads */
iterate 14,1 150.0
NIn8 (225,0);
/° left edge pads */
iterate 1,14 0,150
NIn8 (0,225 rotate 3);
/* top edge pads */
iterate 7.1 180,0
NinB (225,2568 rotate 6);

fterate 7.1 150,0
NOutB (1275.2565 rotate 6);
/% right edge pads */ .
iterate 1.9 0,150
NOut8 (2355,975 rotate 9);
NVad (420,826 oot 9;;

NGnd ?zau.ovs rotate 9);

168

.....
..........

......
...........
.....
1

......
s 'w

Adn Py 2 aBe A 24 Lo Sty A WS A S S AR DA e AN A A0 L ST e

tot.cll |
. 1 /*include cell library*/
e # include " /visi/lib/local/s_sxt.cll”
3 # include "stagel.cll”
4 # include "stage2.cll”
. 5 # include "stage3.cll”
6 inciude "stage4.ci”
7 include "stageS.cll”
8 # include "designer.cll”
®)
10
11 stage 1(340,920);
12 stage2(882,240);
13 stage 1270.1160;:
14 stage4(1454,2000);
16 stage5(0,0);
16 /° piatl out to pla2in ¢/
17 wire poly 899,990 y 985 metal w 3 y 730 diff y 720,
16 wire poly 907,990 y 985 metal w3 y 730.diff y 724 x 915 y 720;
19 ~wire poly 915,890 y 985 metal w 3 y 730 x 931 diff y 720;
20 wire poly 823,800 y 985 metal w 3 y 737 x 947 y 730 dift y 720;
21 wire poly 831,860 y 985 metal w 3 y 744 x 963 y 730 diff y 720;
v, 22 wire poly 839,990 y 985 metal w 3 y 751 x 979 y 730 diff y 720;
23 wire poly 947,900 y 985 metal w 3 y 758 x 995 y 730 diff y 720;
24 wire poly 955,900 y 685 metal w3 y 765 x 1011 y 730 diff y 720;
25 wire poly 863,990 y 686 metal w 3 y 772 x 1027 y 730 dift y 720;
- 26 wire poly 971,080 y 985 metal w3 y 779 x 1043 y 730 diff y 720;
h 14 wire poly 979,880 y 985 metal w3 y 786 x 1069 y 730 diff y 720;
28 wire poly 987,860 y 985 metal w3 y 793 x 1075 y 730 diff y 720;
29 wire poly 985,990 y 9585 metal w 3 y B00 x 1091 y 730 diff y 720;
30 wire poly 1003,990 y 985 metal w 3 y 807 x 1107 y 730 diff y 720;
31 wire poly 1011,990 y 985 metal w3 y 814 x 1123 y 730 diff y 720;
32 wire poly 1019,890 y 985 metal w3 y 821 x 1139 y 730 diff y 720;
a3 wire poly 1027,890 y 985 metal w3 y 828 x 1155 y 730 diff y 720;
34 wire poly 1035,890 y 985 metal w3 y 835 x 1171 y 730 diff y 720;
35 wire poly 1043,800 y 985 metal w 3 y 842 x 1187 y 730 diff y 720;
36 wire poly 1051,890 y 966 metal w 3 y 848 x 1203 y 730 diff y 720;
— 37 wire poly 1050,990 y 985 metal w3 y 858 x 1219 y 730 diff y 720;
38 wire poly 1087,990 y 985 metal w 3 y 8683 x 1235 y 730 diff y 720;
39 wire poly 1075,990 y 985 metal w 3 y 870 x 1251 y 730 diff y 720;
40 wire poly 1083,990 y 985 metal w 3 y 877 x 1267 y 730 diff y 720;
41 wire poly 1091,900 y 985 metal w 3 y 884 x 1283 y 730 diff y 720;
42 wire poly 1090,960 y 985 metal w 3 y 891 x 1299 y 730 diff y 720;
43 wire poly 1107,800 y 985 metal w 3 y 888 x 1315 y 730 diff y 720;
4“4 wire poly 1118,990 y 9865 metal w 3 y 905 x 1331 y 730 diff y 720,
¥ 45 wire poly 1123,000 y 985 metal w 3 y 912 x 1347 y 730 diff y 720;
46 wire poly 1131,.990 y 965 metal w3y 919 x 1363 y 730 diff y 720;
47 wire poly 1139,980 y 985 metal w3 y 928 x 1379 y 730 diff y 720;
48 wire poly 1147,990 y 965 metal w 3 y 933 x 1395 y 730 diff y 720,
: 49 wire poly 1155000 y 985 metal w3y 940 x 11" ' y 730 diff y 720,
50 wire poiy 1163,900 y 985 metal w 3 y 947 x 1427 y 730 dift y 720;
51 wire poly 1171,990 y 986 metal w3 y 954 x 1443 y 730 diff y 720;
52 wire poly 1179,990 y 985 metal w 3 y 981 x 1459 y 730 diff y 720;

. .:-..'. . .""\v’- '..-“.-;.'-.;s;}-'ﬂ] k;"{i“;ﬂ

63 wire poly 1187,990 y 985 metal w 3 y 968 x 1475 y 730 dift y 720;
54 wire poly 1165,980 y 985 metal w 3 y 975 x 1491 y 730 diff y 720;
85 /* pla2 out to pla3in */
56 wire poly 1797,652 y 657 metal w3y 1120 x 1839 y 1155 diff y 1160;
87 wire poly 1789,652 y 857 metal w3y 1126 x 1823 y 1155 diff y 1160;
68 wire poly 1781,852 y 657 metal w3y 1132 x 1807 y 1155 diff y 1160;
89 wire poly 1773,6562 y 657 metal w3y 1138 x 1791 y 1156 diff y 1160;
8o wire poly 1765.652 y 657 metal w3y 1144 x 1775y 1155 diff y 1160;
61 wire poly 1757.652 y 657 metal w3y 1150 x 1759 y 1155 diff y 1160;
82 wire poly 1749,652 y 857 metal w3y 1150 x 1743 y 1155 diff y 1160;
83 wire poly 1741,652 y 657 metal w3y 1144 x 1727 y 1155 diff y 1160;
64 wire poly 1733,652 y 6567 metal w3y 1138 x 1711 y 1155 diff y 1160;
65 wire poly 1725,652 y 857 metal w3 y 1132 x 1695 y 1155 diff y 1160;
es wire poly 1717,652 y 667 metal w3y 1126 x 1879 y 1155 diff y 1160;
87 wire poly 1709,652 y 657 metal w3y 1120 x 1863 y 1155 diff y 1160;
88 wire poly 1701,652 y 657 metal w3 y 1114 x 1647 y 1155 diff y 1160;
69 wire poly 1693,652 y 857 metal w3y 1108 x 1631 y 1155 diff y 1160;
70 wire poly 1685,652 y 657 metal w3y 1102 x 1615 y 1155 diff y 1160;
71 wire poly 1677,652 y 657 metal w3 y 1096 x 1599 y 1155 diff y 1180;
72 wire poly 1669,652 y 857 metal w3y 1090 x 1583 y 1155 diff y 1160;
73 wire poly 1681,652 y 657 metal w3 y 1084 x 1567 y 1155 diff y 1160; ,
74 wire poly 1853,852 y 657 metal w3y 1078 x 1551 y 1155 diff y 1160; f
75 wire paly 1645,852 y 657 metal w3y 1072 x 1535 y 1155 dif y 1160; 1
76 wire poly 1637,652 y 657 metal w3y 1086 x 1519y 1156 diff y 11860; :
A} 77 wire poly 1629,652 y 657 metal w3 y 10680 x 1503 y 1155 diff y 1160;
78 wire poly 1621,6852 y 857 metal w3 y 1054 x 1487 y 1155 diff y 1160;
79 wire poly 1613,852 y 6567 metal w3 y 1048 x 1471 y 1155 diff y 1160;
80 wire poly 1805,652 y 657 metal w3y 1042 x 1456 y 1155 diff y 1180:
v 81 wire poly 1597,852 y 657 metal w3y 10368 x 1439 y 1155 diff y 1160;
wire poly 1589,852 y 6567 metal w3y 1030 x 1423 y 1155 diff y 1160;
wire poly 1581,852 y 657 metal w3y 1024 x 1407 y 1155 diff y 1160;
wire poly 1573,852 y 657 metal w3y 1018 x 1391 y 1155 diff y 1160;

82
83
84
85 wire poly 1565,852 y 857 metal w3y 1012 x 1375 y 1165 diff y 1160;
8s wire poly 1557,8652 y 657 metal w3y 1008 x 1359 y 1155 diff y 1160;
87 wire poly 15649,652 y 657 metal w3y 1000 x 1343 y 1155 diff y 1160;
88 wire poly 1541,652 y 657 metal w3 y 994 x 1327 y 1155 diff y 1160,
89 wire poly 1533,852 y 657 metal w3 y 988 x 1311 y 1155 diff y 1180;
90 wire poly 1525,852 y 857 metal w 3 y 982 x 1295 y 1155 diftf y 11860;
91 /* pla3 out to pla4 in */
92 wire poly 2113,1796 y 1800 metal w 3 y 1995 diff y 2000;
93 wire poly 2105,1796 y 1800 metal w 3 y 1990 x 2087 y 1995 diff y 2000;
94 wire poly 2087,1796 y 1800 metal w 3 y 1984 x 2081 y 1995 diff y 2000,
95 wire poly 2089,17968 y 1800 metal w 3 y 1978 x 2085 y 1995 diff y 2000;
06 wire poly 2081,1798 y 1800 metal w 3 y 1972 x 2049 y 1995 diff y 2000;
87 wire poly 2073,1796 y 1800 metal w 3 y 1968 x 2033 y 1995 diff y 2000;
98 wire poly 2085,1796 y 1800 metal w 3 y 1960 x 2017 y 1995 diff y 2000;
29 wire poly 2057,1796 y 1800 metal w 3 y 1954 x 2001 y 1995 diff y 2000;
100 wire poly 2049,1796 y 1800 metal w 3 y 1948 x 1985 y 1995 diff y 2000;
101 wire poly 2041,1796 y 1800 metal w 3 y 1942 x 1969 y 1995 diff y 2000;
102 wire poly 2033,1786 y 1800 metal w 3 y 1936 x 1953 y 1995 diff y 2000;

- 103 wire poly 2025,1796 y 1800 metal w 3 y 1930 x 1937 y 1995 diff y 2000;
104 wire poly 2017,1796 y 1800 metal w 3 y 1924 x 1921 y 1995 diff y 2000;
108 wire poly 2009,1706 y 1800 metal w 3 y 1918 x 1905 y 1995 diff y 2000;
106 wire poly 2001,1796 y 1800 metal w3 y 1912 x 1889 y 1995 diff y 2000:
107 wire poly 1993,1796 y 1800 metal w 3 y 1908 x 1873 y 1995 diff y 2000,
200

R NVl Al S Uyl T R PSR TR RS Tpv .- -d
N ':::d.:fzf N ,L'Q\.‘)_'k\‘._ AT AN S AN AT M P AL

108
109
110
111
112
113
114
116
116
117
118
119
120
121
122
123
124
126
126
127

129
130
131
132
133
134

138

136
137
138
139
140
141
142
143
144
145
148
147
148
149
150
151
162
183
164
156

187
158
169
160
161
162

RN O AT OIRRY X LT PRI s, &

wire poly 1985,17968 y 1800 metal w 3 y 1900 x 1857 y 1995 diff y 2000;
wire poly 1977,1786 y 1800 metal w 3 y 1894 x 1841 y 1995 diff y 2000; .
poly 1669,1706 y 1800 metal w3 y 1888 x 1825 y 1995 diff y 2000;
wire poly 1961,1796 y 1800 metal w 3 y 1882 x 1809 y 1995 diff y 2000;

ire poly 1963,1798 y 1800 metal w3 y 1876 x 1793 y 1995 diff y 2000;
wire poly 1945,1796 y 1800 metal w3 y 1870 x 1777 y 1995 diff y 2000;
wire poly 1937,1706 y 1800 metal w3 y 1864 x 1761 y 1985 diff y 2000;
wire poly 1829,1786 y 1800 metal w3 y 1858 x 1745 y 1995 diff y 2000;
wire poly 1921,1786 y 1800 metal w 3 y 1852 x 1729 y 1995 diff y 2000;
wire poly 1913,1796 y 1800 metal w3 y 1848 x 1713 y 1995 diff y 2000;

2

3

wire poly 1905,1786 y 1800 metal w 3 y 1840 x 1697 y 1995 diff y 2000
wire poly 1897,1798 y 1800 metal w 3 y 1834 x 1681 y 1995 diff y 2000
poly 1889,1796 y 1800 metal w3 y 1828 x 1665 y 1995 diff y 2000;
1881,1796 y 1800 metal w3 y 1822 x 1649 y 1995 diff y 2000;
873,1798 y 1800 metal w3 y 1816 x 1633 y 1995 diff y 2000;
865,1796 y 1800 metal w3y 1810 x 1817 y 1995 diff y 2000;
interconnects */
1205,1043 w 4 y 1028 x 1200;
1200,1000 w 4 x 1220 y 1196 x 1285;
893,1043 w 4 y 1040 x 884;
\ 896,1028 w 4 x 890 y 1040;
890,1028 w 4 y 975 x 883;
342,1043 w 4 y 956 x 355;
342,1001 w 4 x 358;
interconnects */
1811,585 w 4 y 814 x 1808;
1520.614 w 4 x 1510 y 665 x 1501;
tal 1515,614 w 4 y 803; :
1520,242 w 4 x B84 y 251;
884,595 w 4 y 639 x 892;
884,639 w 4 y 684 x B93;
interconnects */
tal 1860,1786 w 4 x 1272 y 1739;
wire metal 1272,1283 w 4 y 1240 x 12886;
wire metal 1272,1240 w4 y 1196 x 1285;
wire metal 2119,1739 w4 y 1758 x 21186;
wire metal 1860,1758 w 4 x 1856 y 1747;
wire metal 1855,1283 w4 y 1280 x 18486;
wire metal 1855,1280 w 4 y 1215 x 1845;
wire metal 1845,1196 w 4 x 2118 y 1278;
/* pla4 vdd & gnd interconnects */
wire metal 1580,2424 w 4 x 2128 y 2381;
wire metal 2128,2125 w 4 y 2081 x 2120;
wire metal 2128,2081 w 4 y 2036 x 2119;
wire metal 1607,2038 w 4 x 1457 y 2112 x 1462;
wire metal 1457,2381 w 4 y 23966 x 1462;
wire metal 1590,2396 w 4 x 1593 y 2381;
wire metal 1600,2118 w 4 y 2055 x 1607;
/*® end vdd & gnd interconnects for the pla's */
/* bonding pads in to plal inputs */
wire metal 2270,132 y 220 x 877 y 910 diff y 920;
wire metal 2120,132 y 212 x 8681 y 910 diff y 920;
wire metal 1970,132 y 204 x 845 y 910 diff y 920;
wirs metal 18! 9,132 y 196 x 829 y 910 diff y 920;
wh meta) .0,132y 188 x 813y 910 diff y 920;

£
133323848
111

”
T

THHHE
i

/®

&
i

3
g

201

DN . g -9 L o N R M e R L% L e e . e
ot "”-tijt *di:n\.}’ “ ‘l ‘40 s ~§ ‘*ﬁ‘ ~A "7’ ...'."

LS B 3 TRFS : . Sy AN DI S AL

163 wire metal 1520,132 y 180 x 797 y 910 diff y 920;

R 164 wire metal 1370,132 y 172 x 781 y 910 diff y 920; :
N - 185 wire metal 1220,132 y 164 x 765 y 910 diff y 920; h
b 186 wire metal 1070,132 y 156 x 749 y 910 diff y 920; -
o 167 wire metal 920,132 y 148 x 733 y 910 diff y 920; ;
% 168 wire metal 770,132 y 140 x 717 y 910 diff y 920; &
. 169 wire metal 620,132 y 140 x 701 y 910 diff y 920; -
170 wire metal 470,132 y 148 x 685 y 910 diff y 920: i
n 171 wire metal 320,132 y 156 x 669 y 910 diff y 920; i
by 172 wire metal 132,230 x 653 y 910 diff y 9620; 5
173 wire metal 132,380 x 637 y 910 diff y 920; :
2 174 wire metal 132,530 x 621 y 910 diff y 920; N
175 wire metal 132,680 x 605 y 910 diff y 920; ;
176 wire metal 132,830 x 180 y 688 x 589 y 910 diff y 920; i
177 wire metal 132,980 x 188 y 896 x 573 y 910 diff y 920; A
178 wire metal 132,1130 x 198 y 704 x 557 y 910 diff y 920; g
: 179 wire metal 132,1280 x 204 y 712 x 541 y 910 diff y 920;
180 wire metal 132,1430 x 212 y 720 x 525 y 910 diff y 920; g
By 181 wire metal 132,1580 x 220 y 728 x 509 y 910 diff y 920; g
182 wire metal 132,1730 x 228 y 736 x 493 y 910 diff y 920; l
o 183 wire metal 132.1880 x 238 y 744 x 477 y 910 diff y 920; :
B 184 wire metal 132,2030 x 244 y 752 x 461 y 910 diff y 920; :
} 185 wire metal 132,2180 x 252 y 760 x 445 y 910 difl y 920; k
3 » 186 wire metal 230,2568 y 2500 x 260 y 768 x 429 y 910 diff y 920; ;
X 187 wire metal 380,2568 y 2492 x 268 y 776 x 413 y 910 diff y 920; :
' 188 wire metal 530,2568 y 2484 x 276 y 784 x 397 y 910 diff y 920; d
A 189 wire metal 680,2568 y 2476 x 284 y 792 x 381 y 910 diff y 920, .
2 . 180 wire metal 830,2568 y 2488 x 292 y 800 x 365 y 910 diff y 920, g
181 /* end pads in to plal inputs */ 3
A 182 /* phi 1 to plal & pla2 */ g
kY 193 wire metal 980,2568 y 2480 x 300 y 922 poly x 355; N
194 wire poly 882,922 w 2 x 888 y 718 x B93; p
185 /* phi 1 to pla4 */ a
3 196 wire metal 980,2460 x 1220 y 2240 diff w 3 y 2190 metal x 1260 y 2002 A
4 197 poly x 1607;
3 198 /*phi 1 to pla3 from plal & pia2 */
: 199 wire metal 12680,2002 y 1220 poly y 1182 x 12886;
X 200 /* phi 2 plal ¢/]
~ 201 wire metal 1130,2568 y 2470 x 1240 y 2220 diff w 3 y 2180 metal y 1220 poly o
. 202 y 1041 x 1200,
5 203 /*phi 2plas */
:t; 204 wire metal 1240,2383 x 1380 poly x 1462;
by 205 /* phi 2 pla2 & pla3 */
e 206 wire metal 1240,2440 w 3 x 2140 y 1745 poly x 21186;
o 207 wire metal 2140,1745w 3y 1120 x 1900 y 6801 poly x 1803,
208 /* end clock distribution ¢/ y
g A <2089 /* pla4 outputs to output bonding pads */ :
210 wire poly 1467,2434 y 2520 x 1325 y 2555;
211 wire poly 1475,2434 y 2555;
k12 wire poly 1483,2434 y 2550 x 1625 y 2555;
213 wire poly 1491,2434 y 2545 x 1775 y 2555; b
214 wire poly 1499,2434 y 2540 x 1925 y 2555; =
215 wire poly 15072434 y 2532 metal w 3 x 2075 poly y 2555; N
216 wire poly 1515,2434 y 2524 metal w 3 x 2225 poly y 2555, R
217 wire poly 1523,2434 y 2518 metal w 3 x 2300 y 2225 x 2340 poly x 2355; X

e

! ¥ ¢l ;
s .A";l», v ‘;”;h; s

gl AN .
LA o, 38 SR

LI
LA

o e A B T T D R G R e e T T T T TV T T A T o o s T P bS, |

AR
14
134
N
el
’ 218 wire poly 1531,2434 y 2508 metal w 3 x 2200 y 2075 x 2340 poly x 2355;
F 219 wire poly 1539,2434 y 2500 metal w 3 x 2280 y 1925 x 2340 poly x 2355;
by - 220 wire poly 1647,2434 y 2492 metal w 3 x 2270 y 1775 x 2340 poly x 2355;
fia 21 wire poly 1555,2434 y 2484 metal w 3 x 2260 y 1625 x 2340 poly x 2355;
: 30 22 wire poly 1583,2434 y 2476 metal w 3 x 2250 y 1475 x 2340 poly x 2355;
il 223 wire poly 1571,2434 y 2468 metal w 3 x 2240 y 1325 x 2340 poly x 2355;
" 224 wire poly 1579,2434 y 2480 metal w 3 x 2230 y 1175 x 2340 poly x 2355;

~ 225 wire poly 1587,2434 y 2452 metal w 3 x 2220 y 1025 x 2340 poly x 2355;
PRk 226 /* end pla4 output wire runs to the output bonding pads */

3 27 /% connect pad gnd & vdd */
J:j 228 wire metal 4,0 w8 y 2700,
p3~ 229 wire metal 0,2696 w 8 x 2500;
SAN 230 wire metal 2496,2700 w 8 y 0;

231 wire metal 0,4 w B x 2500;

3 232 wire metal 98,90 w 18 y 2610;

AN 233 wire metal 90,2602 w 18 x 2410;
At 234 wire metal 2402,2810 w 18 y 90;
S 235 wire metal 80,98 w 18 x 2410;
WN 2038 /* vdd & gnd connects for pla’'s */

237 /*vdd for pla2 */

N 238 wire metal 2500,242 w B x 2450 diff w 8 x 2320 metal wB x 1860 w 4
X 239 x 1808;
a 240 wire metal 1860,242 w 4 y 842 x 1807;
3 3 . 241 /* gnd connect for pla3 */
L ' 242 wire metal 2402,1700 w 8 x 2270 diff w 8 x 2130 metal w 4 y 1758 x 2120;

2 243 /* vdd & gnd connect for plas */

B 244 wire metal 1260,2700 w B y 2640 diff w B y 2424 metal w 4 x 1463;

13 245 wire metal 1400,2602 w 8 y 2460 diff w 8 y 2396 metal w 4 x 1458;
,3 v 248 /*pla3 connect vdd from pla4 */

257 247 wire metal 1457,2036 w 4 y 17886;

Lot 248 /* xtra vdd to pla3 */

a 249 wire metal 2500,1250 w B x 2430 diff w 8 x 2118;

, 250 /* pla2 gnd connect */

N 251 wire metal 2402,614 w B x 1920 diff w 8 x 1840 metal w 4 x 1811;
AN B2 /* plal vdd connect */
ez ! 253 wire metal 940,2700 w B y 2640 diff w 8 y 2440 metal w B y 2240 x 820 y 2191;
23 254 /*plal gnd connect®/
b 255 wire metal 1400,2396 w 8 y 2202 x 1205 w 4 y 2175;
: 258 /*xtra vdd to plal */
) 257 wire metal 0,1100 w 8 x 70 diff w 8 x 320 metal w 8 x 342;
B 258 /*xtra gnd to plal */
- v 269 wire metal 98,950 w 8 x 170 diff w 8 x 320 y 975 w 4 x 350
260 metal w 4 x 360;
£ .
25 281 /* put identification */
282 designer(1980,700);

l": c !
?} 263 J i
%

35
)

- 203

....... e e mm e e
.".'."-"-"".\'.*.'."."'. L e, .
HERITIRT St UL UG T SN DART AR W

PN

Celotal

T e T
AN
L

RS 3

¢ i A
. PR
IO FR TN RSy

AT

(A A

2

2

5 e 3
‘ } EV t'u"l' ’”

IS

(L ST ¥r L

| PR

LN
(3
;-

Lo aml e e g

designer.cll

/*generate a signature for the project*/

;leslgner()

poly:
/* HAUENSTEIN */

wire 0,0 u 20;
wire 0,10 r 20;

r

d 20 r 20 u 20;
120u20r 15;
r10:

wire 190,0 u 20;
wire 180,20 r 20;
wire 230,0120u20r 15;

wire 240,20 r 20;
wire 250,0 u 20;
wire 270,0 u 20;
wire 290,0 u 20;
wire 275,13 u 6;
wire 280,7 u 6;
wire 285,1 u 8;

/* CONRADI */

wire 20,40120 u20r 15;
wire 30,400 20r 204201 21;
wire 60,40 u 20;

wire 80,40 u 20;

wire 685,53 u 6;

wire 70,47 u 6;

wire 75,41 u 8;

wire 90,40 u20r 204 101 21;
wire 105,50 d 5;

wire 110,40 u 5;

wire 120,40 u 20 r 20 4 20;
wire 120,50 r 20;

wire 150,40 u20r20d4 201 21;
wire 152,40 u 20;

A AN St AR AR A

PRIT DI INE NP P VY R,

PPV EPER S S e U

QU DIy ey R SRy e SN

-

o o N Al B e Vel

e e e NN . j
A A AP RIS o
LS T WA IR Ty D Wi 0 .

LA SR A K A ol b o |

3
989 m
2

~'~‘l
N

1~."

.
;
;
W

n‘. - .-\. .i' .‘..‘

s8 & &6 & o
O € 3L oUIVeaaS 8
28 52288225888 88385
8RS ddoouonaosBTYRES

o D~ NNOQONO0 v~ vttt

EEREGRERRRREERRRERES

10r20ui10;

53
Ly -
8
o8

"
<]
o

i

10

3
o
o
- ..
de

o
8o
rl
' Bnd
—~ @
g9

m
8
u o
S

P~
— 9
-0

i S P .
T D G, AT AT S O N YK

el AT X P o PR DI e IR o q v o =4 . : I
b r W NN el . AP NANPIE SR~ AN b PN) NUURNSRL e veOA | e

LIRS AN

- R B 2

Y]

:
A

_.4‘

e

y
-

1,22

R T A
L oo o4

ra'y e
-

AV aWagle taw oW,

DOO~NORLDN-

ala® o0 8,

47 A2
51 B1

11321 A15
11316 Bi4
11311 Al4
11306 B13
11301 A13
11206 B12
11291 A12
11286 B11
11281 A11
11276 B10
11271 A10
112686 B9
10883 A9
10658 B8
10279 A8
8897 B?
8869 A7
7352 B8
8511 A8
5446 BS
4878 AS
4265 B4
3107 A1
2958 B3
1487 A3
845 B2

Tikd

¥ 3) S

el 4 € r

e L
&

s Calo vata

(.

-

-tat,

N At

final. sym

4
|
]

X!

(A

Lign I THOd W,

S A AR

o «W\ .

AR Yoadid

K PHI1 011000 PHI2 000011

WAA15A14 A13 A12 A11 A10 AB AB A7 AB A5 A4 ABA2 A1 AO
WBBI15B14 B13 B12 B11 B10 B9 B8 B7Y B6 B5 B4 B3 B2 B
W OUT S15 S14 S13 S12 S11 S10 S9 S8 S7 S8 S5 S4 S3
WCINCIN

hA13A10 ABABAGAS A4 A0OB14B
1A15 A14 A12 A11 A7 A3 A2 A1 B15 B12 B10 B11 B8 B4 B3 B2 B0

c
1 A13 AB A4 AD B13 B7 B5 CIN
h Al A2A7 A11 B2 B5B11 B12

¢

h A13 A4 A0 B7 B5 CIN

c

1 AS AB A4 A0 B14 B9 BS B1

e
1A15A14 A13 A12 A11 A10 A9 AB A7 AB A5 A4 A3 A2 A1 AOCIN
1 B15 B14 B13 B12 B11 B10 B B8 B? Bé BS B4 B3 B2 B1 B0

c
hA15A14 A13 A12 A11 A10 A9 AB A7 A6 A5 A4 A3 A2 A1 AO

[
(]
3
3
g
&
w
Paery
Q u
2

e
1A15 Al4
h B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 CIN

00000

..............

!
q
{
!
.l
]
|
1
4
Q{
Y
d
i
1
K
1
‘.l

......

e {
51,
P
!‘

K

Feafc K A
,;z.f'-g:,,' d
oy ey, d

a7

1
2
3
4
8
6
7
8
9
21

22
23
24
25
26
7
28
29
30
a1
332
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

2418 transistors, 1546 nodes (1233 pulled up)

CIN=1 1

OUT=300000000000000K

B=0110001011100010
A=0010011101110001
took 1681 events
=0 0

OUT=X2000000000000X

B=0101101001100110
A=0000111011100110
cycle took 1391 events
CIN=11
OUT=.
B=0101101011100110
A=0010111011110111
cycle took 1264 events
CIN=1 1
OUT=1000101001010100
B=0001100011000100
A=0010110011100110
[loot.gok 1440 events
01)'5:0110100101001100
=0000000000000000
A=0000000000000000
cycle took 1380 events
CIN=00
OUT=1000100111011110
B=0000000000000000

. A=1111111111111111

cycle took 1423 events
CIN=11
OUT=0100010110101011
B=0111111111111111
A=0011111111111111
gﬁle took 1583 events
=11
QUT=0000000000000000
B=0111111111111111
A=0011111111111111
cycle took 1317 events
CIN=1 1
OUT=1111111111111111
B=0111111111111111
A=0011111111111111
cycle took 1261 events
CiN=11
OUT=1011111111111111
B=0111111111111111
A=0011111111111111
c lolt.ook 989 events
=11

sim.out

25314
10087

23142
3814

23270
12023

35412
6340
11494

28956
0
0

35294
0
85535

17835
32787
16383

32767
16383

85535
2787
16383

49151
32767
18383

OUT=1011111111111111 49151
B=0111111111111111 32787
A=0011111111111111 16383
cycle took 796 events

33 4

.
?‘ ».
T <
o
&
&
b
r:

¥,

\‘

P
by By o
-

a e

%

e R R T R I R T T Ty S Sy U AT U S S S e PR - .t t At et
sy, 1y ﬂ':”hh%“ Ny f‘- .'u'r\q’ w,l‘c.' o’ d',..- ‘-q".* g u~\. 1_".\- V Il,'--_i" < (5(. ._-.‘\.~\.‘ .

78 v X

;
LIST OF REFERENCES s
- :
. 1. Mead.C. and Conway L., ntroduction To VLSI Systems, Addison-Wesley, 1980. ﬁ
. 2 'nsgns.R.T. and Yates,J., A User Guide To The UNIX System, McGraw-Hill,
X 1682.
3. UNIX Programmer's Manual, Bell Laboratories, 7th ed., 1979.
4. Purdum,J., C Programming Guide, Que, 1983. .
5. Saxe,T., CLL - A Chip Layout Language, version 3, paper obtained from i
Stanford University. .
. 6. Wolt.W., Design Validation For EE271, paper obtained from Stanford 3
University. 3
‘- 7. Newkirk.J., Mathews,R., Redford,J., and Burns,C., Stanford n#0S Cell Library, .
5 1st ed., 1981. :
:
' 8. Cohen,D. and Richardson,L., MOSIS User's Manual, USC/1SI, 1982. ’:
9. Hwang K., Computer Arithmetic Principles, Architecture, And Design, Viley, X
1879. v4
N
10. Ilogs User's Manual version 2H.
i f'_-
\V
4 ' .
B
4 o
-
N
.
)
210 N

T i, ,,” Ar’ ":*." 2 ‘.: SO T RIOTN NI ’"'-“'."' ‘1'.".. L R T I ST T T LI N P AR R AP LTAFLURL SL RPEUR

K . S A A LRI T LIS R I A ALY

INITIAL DISTRIBUTION LIST

d 1. Superintendant
Attn: Library, Code 0142
Naval Postgraduate School
¢ Monterey, California 93943

2. Dr. Robert Mathews
AEL 205
Stanford, CA 94305

1 3. Lt.Col. Harold Carter
Bt AFIT/ENG
Wright Patterson AFB, Ohio 45433

_ 4. Lt. Joseph R. Conradi
N 1102 Spruance Rd.
Monterey, CA 93940

3
K
l AN 5. Lt. Bruce R. Hauenstein
d 4216 Maintree Ct.
Fairfax, VA 22033

v 6. Capt. Mark Stotzer
2\ 1028 Spruance Rd.
2 Monterey, CA 93940

7. Mr. Albert Wong
Code 52
Naval Postgraduate School
Monterey, CA 93843

8. Ms. Susan Taylor
AEL 205
Stanford, CA 94305

9. Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

10. Chairman, EE Department
Code 82

Naval Postgraduate School
Monterey, CA 93843

3 11. Dr. Donald Kirk
Code 62Kl
Naval Postgraduate School
Monterey, CA 93943

N
X2

TS AR

B X

N T L P e e
- . & A A [y N - (] A d L4

No. Copies

15

e S i A A A o eyt ARMEAOR I e Y

by
b

$

*

o 25

" 12. Prof. Robert Strum 1
o Code 62ST
'Y Naval Postgraduate School
Monterey, CA 93943

13. Dr. H.H.Loomis 1
J Code 62LM
Naval Postgraduate School
Monterey, CA 93843

o ¥
.

R

L e A R

5 et

iy 3

v‘;iﬁ
R
K
b
ik

e

W

212

. ;-f\f"v:<¢~: .
Lo ‘;.'w.) -.'..s'

o, v
~e

B E G I UL IR T
A AR

